You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 9.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Train mobilenetV2 on ImageNet"""
  16. import os
  17. import argparse
  18. import random
  19. import numpy as np
  20. from mindspore import context
  21. from mindspore import Tensor
  22. from mindspore import nn
  23. from mindspore.train.model import Model
  24. from mindspore.context import ParallelMode
  25. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  26. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
  27. from mindspore.train.serialization import load_checkpoint
  28. from mindspore.communication.management import init, get_group_size, get_rank
  29. from mindspore.train.quant import quant
  30. from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net
  31. import mindspore.dataset.engine as de
  32. from src.dataset import create_dataset
  33. from src.lr_generator import get_lr
  34. from src.utils import Monitor, CrossEntropyWithLabelSmooth
  35. from src.config import config_ascend_quant, config_gpu_quant
  36. from src.mobilenetV2 import mobilenetV2
  37. random.seed(1)
  38. np.random.seed(1)
  39. de.config.set_seed(1)
  40. parser = argparse.ArgumentParser(description='Image classification')
  41. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  42. parser.add_argument('--pre_trained', type=str, default=None, help='Pertained checkpoint path')
  43. parser.add_argument('--device_target', type=str, default=None, help='Run device target')
  44. args_opt = parser.parse_args()
  45. if args_opt.device_target == "Ascend":
  46. device_id = int(os.getenv('DEVICE_ID'))
  47. rank_id = int(os.getenv('RANK_ID'))
  48. rank_size = int(os.getenv('RANK_SIZE'))
  49. run_distribute = rank_size > 1
  50. device_id = int(os.getenv('DEVICE_ID'))
  51. context.set_context(mode=context.GRAPH_MODE,
  52. device_target="Ascend",
  53. device_id=device_id, save_graphs=False)
  54. elif args_opt.device_target == "GPU":
  55. init("nccl")
  56. context.set_auto_parallel_context(device_num=get_group_size(),
  57. parallel_mode=ParallelMode.DATA_PARALLEL,
  58. mirror_mean=True)
  59. context.set_context(mode=context.GRAPH_MODE,
  60. device_target="GPU",
  61. save_graphs=False)
  62. else:
  63. raise ValueError("Unsupported device target.")
  64. def train_on_ascend():
  65. config = config_ascend_quant
  66. print("training args: {}".format(args_opt))
  67. print("training configure: {}".format(config))
  68. print("parallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
  69. epoch_size = config.epoch_size
  70. # distribute init
  71. if run_distribute:
  72. context.set_auto_parallel_context(device_num=rank_size,
  73. parallel_mode=ParallelMode.DATA_PARALLEL,
  74. parameter_broadcast=True,
  75. mirror_mean=True)
  76. init()
  77. # define network
  78. network = mobilenetV2(num_classes=config.num_classes)
  79. # define loss
  80. if config.label_smooth > 0:
  81. loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth, num_classes=config.num_classes)
  82. else:
  83. loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
  84. # define dataset
  85. dataset = create_dataset(dataset_path=args_opt.dataset_path,
  86. do_train=True,
  87. config=config,
  88. device_target=args_opt.device_target,
  89. repeat_num=1,
  90. batch_size=config.batch_size)
  91. step_size = dataset.get_dataset_size()
  92. # load pre trained ckpt
  93. if args_opt.pre_trained:
  94. param_dict = load_checkpoint(args_opt.pre_trained)
  95. load_nonquant_param_into_quant_net(network, param_dict)
  96. # convert fusion network to quantization aware network
  97. network = quant.convert_quant_network(network,
  98. bn_fold=True,
  99. per_channel=[True, False],
  100. symmetric=[True, False])
  101. # get learning rate
  102. lr = Tensor(get_lr(global_step=config.start_epoch * step_size,
  103. lr_init=0,
  104. lr_end=0,
  105. lr_max=config.lr,
  106. warmup_epochs=config.warmup_epochs,
  107. total_epochs=epoch_size + config.start_epoch,
  108. steps_per_epoch=step_size))
  109. # define optimization
  110. opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), lr, config.momentum,
  111. config.weight_decay)
  112. # define model
  113. model = Model(network, loss_fn=loss, optimizer=opt)
  114. print("============== Starting Training ==============")
  115. callback = None
  116. if rank_id == 0:
  117. callback = [Monitor(lr_init=lr.asnumpy())]
  118. if config.save_checkpoint:
  119. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  120. keep_checkpoint_max=config.keep_checkpoint_max)
  121. ckpt_cb = ModelCheckpoint(prefix="mobilenetV2",
  122. directory=config.save_checkpoint_path,
  123. config=config_ck)
  124. callback += [ckpt_cb]
  125. model.train(epoch_size, dataset, callbacks=callback)
  126. print("============== End Training ==============")
  127. def train_on_gpu():
  128. config = config_gpu_quant
  129. print("training args: {}".format(args_opt))
  130. print("training configure: {}".format(config))
  131. # define network
  132. network = mobilenetV2(num_classes=config.num_classes)
  133. # define loss
  134. if config.label_smooth > 0:
  135. loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth,
  136. num_classes=config.num_classes)
  137. else:
  138. loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
  139. # define dataset
  140. epoch_size = config.epoch_size
  141. dataset = create_dataset(dataset_path=args_opt.dataset_path,
  142. do_train=True,
  143. config=config,
  144. device_target=args_opt.device_target,
  145. repeat_num=1,
  146. batch_size=config.batch_size)
  147. step_size = dataset.get_dataset_size()
  148. # resume
  149. if args_opt.pre_trained:
  150. param_dict = load_checkpoint(args_opt.pre_trained)
  151. load_nonquant_param_into_quant_net(network, param_dict)
  152. # convert fusion network to quantization aware network
  153. network = quant.convert_quant_network(network,
  154. bn_fold=True,
  155. per_channel=[True, False],
  156. symmetric=[True, False],
  157. freeze_bn=1000000,
  158. quant_delay=step_size * 2)
  159. # get learning rate
  160. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  161. lr = Tensor(get_lr(global_step=config.start_epoch * step_size,
  162. lr_init=0,
  163. lr_end=0,
  164. lr_max=config.lr,
  165. warmup_epochs=config.warmup_epochs,
  166. total_epochs=epoch_size + config.start_epoch,
  167. steps_per_epoch=step_size))
  168. # define optimization
  169. opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), lr, config.momentum,
  170. config.weight_decay, config.loss_scale)
  171. # define model
  172. model = Model(network, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale)
  173. print("============== Starting Training ==============")
  174. callback = [Monitor(lr_init=lr.asnumpy())]
  175. ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
  176. if config.save_checkpoint:
  177. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  178. keep_checkpoint_max=config.keep_checkpoint_max)
  179. ckpt_cb = ModelCheckpoint(prefix="mobilenetV2", directory=ckpt_save_dir, config=config_ck)
  180. callback += [ckpt_cb]
  181. model.train(epoch_size, dataset, callbacks=callback)
  182. print("============== End Training ==============")
  183. if __name__ == '__main__':
  184. if args_opt.device_target == "Ascend":
  185. train_on_ascend()
  186. elif args_opt.device_target == "GPU":
  187. train_on_gpu()
  188. else:
  189. raise ValueError("Unsupported device target.")