You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_python_pass.py 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import mindspore
  17. import mindspore.nn as nn
  18. from mindspore import context
  19. from mindspore.common.tensor import Tensor
  20. from mindspore.ops import operations as P
  21. from mindspore.graph_utils.python_pass import registe_pass, unregiste_pass, set_renorm, gen_new_parameter,\
  22. cancel_new_parameter
  23. from mindspore.common.api import _generate_pip_args
  24. from mindspore._c_expression import generate_key, Executor_
  25. from mindspore.graph_utils.graph_pattern import OneOf, Prim, Call, NoneOf, Any, NewTensor, NewParameter, Imm
  26. context.set_context(mode=context.GRAPH_MODE)
  27. def get_func_graph(obj, *args, phase="validate"):
  28. args_names, args_list = _generate_pip_args(obj, *args)
  29. dic = dict(zip(args_names, args_list))
  30. key = generate_key(phase, dic)
  31. phase_prefix = str(key[1])
  32. if phase == 'export':
  33. phase = phase + '.' + phase_prefix + '.' + str(obj.create_time)
  34. else:
  35. phase = phase_prefix + phase + '.' + str(obj.create_time)
  36. _executor = Executor_.get_instance()
  37. _executor.compile(obj, args_list, phase, False)
  38. return _executor.get_func_graph(phase)
  39. def test_softmax_relu():
  40. """
  41. Use python pass to transform from Softmax to ReLU.
  42. """
  43. inputs = Tensor(np.ones([42]), mindspore.float16)
  44. softmax_model = nn.Softmax()
  45. @registe_pass(run_only_once=True)
  46. def softmax_relu_pass():
  47. x = Any()
  48. pattern = Call(P.Softmax(), inputs=[x])
  49. target = Call(P.ReLU(), inputs=[x])
  50. return pattern, target
  51. transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2)
  52. unregiste_pass(softmax_relu_pass)
  53. assert "ReLU" in transformed_repr
  54. assert "Softmax" not in transformed_repr
  55. def test_softmax_relu_sigmoid():
  56. """
  57. Use python pass to transform from Softmax(x) to ReLU(Sigmoid(x)).
  58. NOTE:
  59. Sigmoid pattern only exists in the target.
  60. """
  61. inputs = Tensor(np.ones([42]), mindspore.float16)
  62. softmax_model = nn.Softmax()
  63. @registe_pass(run_only_once=True)
  64. def softmax_relu_pass():
  65. x = Any()
  66. softmax_pattern = Prim(P.Softmax())
  67. pattern = Call(softmax_pattern, inputs=[x])
  68. sigmoid_pattern = Prim(P.Sigmoid())
  69. call_sigmoid = Call(sigmoid_pattern, [x])
  70. relu_pattern = Prim(P.ReLU())
  71. target = Call(relu_pattern, inputs=[call_sigmoid])
  72. return pattern, target
  73. transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(3)
  74. unregiste_pass(softmax_relu_pass)
  75. assert "ReLU" in transformed_repr
  76. assert "Sigmoid" in transformed_repr
  77. assert "Softmax" not in transformed_repr
  78. def test_isin_pattern_0():
  79. """
  80. Test IsIn pattern which expresses the IsIn/OneOf semantics.
  81. """
  82. inputs = Tensor(np.ones([42]), mindspore.float16)
  83. softmax_model = nn.Softmax()
  84. @registe_pass(run_only_once=True)
  85. def softmax_relu_pass():
  86. x = Any()
  87. softmax_pattern = Prim(P.Softmax())
  88. call_softmax = Call(softmax_pattern, inputs=[x])
  89. relu_pattern = Prim(P.ReLU())
  90. call_relu = Call(relu_pattern, inputs=[x])
  91. pattern = OneOf([call_softmax, call_relu])
  92. relu6_pattern = Prim(P.ReLU6())
  93. target = Call(relu6_pattern, inputs=[x])
  94. return pattern, target
  95. transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2)
  96. unregiste_pass(softmax_relu_pass)
  97. assert "ReLU6" in transformed_repr
  98. assert "Softmax" not in transformed_repr
  99. def test_isin_pattern_1():
  100. """
  101. Test IsIn. IsIn is used as nested inputs for the target in this case.
  102. """
  103. inputs = Tensor(np.ones([42]), mindspore.float16)
  104. softmax_model = nn.Softmax()
  105. @registe_pass(run_only_once=True)
  106. def softmax_neg_pass():
  107. x = Any()
  108. softmax_pattern = Prim(P.Softmax())
  109. call_softmax = Call(softmax_pattern, inputs=[x])
  110. relu_pattern = Prim(P.ReLU())
  111. call_relu = Call(relu_pattern, inputs=[x])
  112. pattern = OneOf([call_softmax, call_relu])
  113. neg_ops = Prim(P.Neg())
  114. target = Call(neg_ops, inputs=[pattern])
  115. return pattern, target
  116. transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(4)
  117. unregiste_pass(softmax_neg_pass)
  118. assert "Neg" in transformed_repr
  119. assert "Softmax" in transformed_repr
  120. def test_isnot_pattern_0():
  121. """
  122. Test IsNot pattern which expresses the IsNot semantics.
  123. Case: IsNot pass failed to match
  124. """
  125. set_renorm(False)
  126. class ConvBN(nn.Cell):
  127. def __init__(self):
  128. super(ConvBN, self).__init__()
  129. self.conv = P.Conv2D(32, 3)
  130. self.conv_weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32)
  131. self.scale = Tensor(np.ones([32]), mindspore.float32)
  132. self.bias = Tensor(np.ones([32]), mindspore.float32)
  133. self.mean = Tensor(np.ones([32]), mindspore.float32)
  134. self.variance = Tensor(np.ones([32]), mindspore.float32)
  135. self.bn = P.BatchNorm()
  136. def construct(self, x):
  137. x = self.conv(x, self.conv_weight)
  138. x = self.bn(x, self.scale, self.bias, self.mean, self.variance)
  139. return x
  140. inputs = Tensor(np.random.normal(0, 1, (10, 32, 32, 32)), mindspore.float32)
  141. conv_bn_model = ConvBN()
  142. @registe_pass(run_only_once=True)
  143. def single_bn_pass():
  144. """
  145. Sub a BN which does NOT take Conv as inputs to ReLU6.
  146. """
  147. conv2d_prim = Prim("Conv2D")
  148. conv2d = Call(conv2d_prim)
  149. pattern_0 = NoneOf(conv2d)
  150. pattern = Call(P.BatchNorm(), inputs=[pattern_0])
  151. target = Call(P.ReLU6(), inputs=[pattern_0])
  152. return pattern, target
  153. @registe_pass(run_only_once=True)
  154. def bn_pass():
  155. """
  156. Sub a BN to Softmax.
  157. """
  158. pattern = Call(P.BatchNorm())
  159. target = Call(P.Softmax())
  160. return pattern, target
  161. transformed_repr = get_func_graph(conv_bn_model, inputs).get_return().expanded_str(5)
  162. unregiste_pass(single_bn_pass)
  163. unregiste_pass(bn_pass)
  164. assert "ReLU6" not in transformed_repr
  165. assert "Softmax" in transformed_repr
  166. set_renorm(True)
  167. def test_isnot_pattern_1():
  168. """
  169. Test IsNot pattern which expresses the IsNot semantics.
  170. Case: IsNot pattern matches with the graph
  171. """
  172. inputs = Tensor(np.ones([42]), mindspore.float16)
  173. softmax_model = nn.Softmax()
  174. @registe_pass(run_only_once=True)
  175. def single_bn_pass():
  176. """
  177. Sub a BN which does NOT take MatMul as inputs to ReLU6.
  178. """
  179. matmul = Prim("MatMul")
  180. pattern_0 = NoneOf(matmul)
  181. softmax = P.Softmax()
  182. pattern = Call(softmax, inputs=[pattern_0])
  183. relu6 = P.ReLU6()
  184. target = Call(relu6, inputs=[pattern_0])
  185. return pattern, target
  186. transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5)
  187. unregiste_pass(single_bn_pass)
  188. assert "ReLU6" in transformed_repr
  189. assert "Softmax" not in transformed_repr
  190. def test_newtensor_pattern():
  191. """
  192. Test NewTensor pattern in the target
  193. """
  194. set_renorm(False)
  195. inputs = Tensor(np.ones([42]), mindspore.float16)
  196. softmax_model = nn.Softmax()
  197. @registe_pass(run_only_once=True)
  198. def softmax_addn_pass():
  199. x = Any()
  200. pattern = Call(P.Softmax(), inputs=[x])
  201. weight_tensor = Tensor(np.zeros([42]), mindspore.float16)
  202. new_weight = NewTensor(weight_tensor)
  203. target = Call(P.AddN(), inputs=[x, new_weight])
  204. return pattern, target
  205. transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2)
  206. unregiste_pass(softmax_addn_pass)
  207. assert "AddN" in transformed_repr
  208. assert "Softmax" not in transformed_repr
  209. set_renorm(True)
  210. def test_newparameter_pattern():
  211. """
  212. Test NewParameter pattern in the target
  213. """
  214. inputs = Tensor(np.ones([42]), mindspore.float16)
  215. softmax_model = nn.Softmax()
  216. @registe_pass(run_only_once=True)
  217. def softmax_addn_pass():
  218. x = Any()
  219. pattern = Call(P.Softmax(), inputs=[x])
  220. default_tensor0 = Tensor(np.ones((4, 4)), mindspore.float32)
  221. default_tensor1 = Tensor(np.ones((4, 4)), mindspore.float32)
  222. new_para_0 = NewParameter("Merlin", default_tensor0)
  223. new_para_1 = NewParameter("Arthur", default_tensor1)
  224. target_0 = Call(P.MatMul(), inputs=[new_para_0, new_para_1])
  225. target = Call("make_tuple", inputs=[target_0])
  226. return pattern, target
  227. transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5)
  228. unregiste_pass(softmax_addn_pass)
  229. assert "MatMul" in transformed_repr
  230. assert "make_tuple" in transformed_repr
  231. assert "Softmax" not in transformed_repr
  232. def test_imm_target():
  233. """
  234. Test NewParameter pattern in the target
  235. """
  236. inputs = Tensor(np.ones([42]), mindspore.float16)
  237. softmax_model = nn.Softmax()
  238. @registe_pass(run_only_once=True)
  239. def softmax_pass():
  240. x = Any()
  241. pattern = Call(P.Softmax(), inputs=[x])
  242. imm = Imm(0)
  243. target_0 = Call("make_tuple", inputs=[pattern])
  244. target = Call("tuple_getitem", inputs=[target_0, imm])
  245. return pattern, target
  246. transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5)
  247. unregiste_pass(softmax_pass)
  248. assert "make_tuple" in transformed_repr
  249. assert "tuple_getitem" in transformed_repr
  250. assert "Softmax" in transformed_repr
  251. def test_gen_new_parameter():
  252. """
  253. Test gen_new_parameter
  254. """
  255. inputs = Tensor(np.ones([42]), mindspore.float16)
  256. softmax_model = nn.Softmax()
  257. default_tensor = Tensor(np.ones((4, 4)), mindspore.float32)
  258. new_para = NewParameter("Merlin", default_tensor)
  259. gen_new_parameter(new_para)
  260. @registe_pass(run_only_once=True)
  261. def softmax_make_tuple_pass():
  262. x = Any()
  263. softmax = P.Softmax()
  264. pattern = Call(softmax, inputs=[x])
  265. target = Call("make_tuple", inputs=[pattern, new_para])
  266. return pattern, target
  267. transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5)
  268. assert "Merlin" in transformed_repr
  269. unregiste_pass(softmax_make_tuple_pass)
  270. cancel_new_parameter(new_para)
  271. transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5)
  272. assert "Merlin" not in transformed_repr