You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 6.7 kB

4 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Train Resnet50 on ImageNet"""
  16. import os
  17. import argparse
  18. from mindspore import context
  19. from mindspore import Tensor
  20. from mindspore.nn.optim.momentum import Momentum
  21. from mindspore.train.model import Model
  22. from mindspore.context import ParallelMode
  23. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  24. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  25. from mindspore.train.serialization import load_checkpoint
  26. from mindspore.compression.quant.quant_utils import load_nonquant_param_into_quant_net
  27. from mindspore.communication.management import init
  28. import mindspore.nn as nn
  29. import mindspore.common.initializer as weight_init
  30. from mindspore.common import set_seed
  31. from models.resnet_quant_manual import resnet50_quant #manually construct quantative network of resnet50
  32. from src.dataset import create_dataset
  33. from src.lr_generator import get_lr
  34. from src.config import config_quant
  35. from src.crossentropy import CrossEntropy
  36. set_seed(1)
  37. parser = argparse.ArgumentParser(description='Image classification')
  38. parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
  39. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  40. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  41. parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
  42. parser.add_argument('--pre_trained', type=str, default=None, help='Pertained checkpoint path')
  43. args_opt = parser.parse_args()
  44. config = config_quant
  45. if args_opt.device_target == "Ascend":
  46. device_id = int(os.getenv('DEVICE_ID'))
  47. rank_id = int(os.getenv('RANK_ID'))
  48. rank_size = int(os.getenv('RANK_SIZE'))
  49. run_distribute = rank_size > 1
  50. context.set_context(mode=context.GRAPH_MODE,
  51. device_target="Ascend",
  52. save_graphs=False,
  53. device_id=device_id,
  54. enable_auto_mixed_precision=True)
  55. else:
  56. raise ValueError("Unsupported device target.")
  57. if __name__ == '__main__':
  58. # train on ascend
  59. print("training args: {}".format(args_opt))
  60. print("training configure: {}".format(config))
  61. print("parallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
  62. epoch_size = config.epoch_size
  63. # distribute init
  64. if run_distribute:
  65. context.set_auto_parallel_context(device_num=rank_size,
  66. parallel_mode=ParallelMode.DATA_PARALLEL,
  67. gradients_mean=True)
  68. init()
  69. context.set_auto_parallel_context(device_num=args_opt.device_num,
  70. parallel_mode=ParallelMode.DATA_PARALLEL,
  71. gradients_mean=True, all_reduce_fusion_config=[107, 160])
  72. # define manual quantization network
  73. net = resnet50_quant(class_num=config.class_num)
  74. net.set_train(True)
  75. # weight init and load checkpoint file
  76. if args_opt.pre_trained:
  77. param_dict = load_checkpoint(args_opt.pre_trained)
  78. load_nonquant_param_into_quant_net(net, param_dict, ['step'])
  79. epoch_size = config.epoch_size - config.pretrained_epoch_size
  80. else:
  81. for _, cell in net.cells_and_names():
  82. if isinstance(cell, nn.Conv2d):
  83. cell.weight.set_data(weight_init.initializer(weight_init.XavierUniform(),
  84. cell.weight.shape,
  85. cell.weight.dtype))
  86. if isinstance(cell, nn.Dense):
  87. cell.weight.set_data(weight_init.initializer(weight_init.TruncatedNormal(),
  88. cell.weight.shape,
  89. cell.weight.dtype))
  90. if not config.use_label_smooth:
  91. config.label_smooth_factor = 0.0
  92. loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  93. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  94. # define dataset
  95. dataset = create_dataset(dataset_path=args_opt.dataset_path,
  96. do_train=True,
  97. repeat_num=1,
  98. batch_size=config.batch_size,
  99. target=args_opt.device_target)
  100. step_size = dataset.get_dataset_size()
  101. # get learning rate
  102. lr = get_lr(lr_init=config.lr_init,
  103. lr_end=0.0,
  104. lr_max=config.lr_max,
  105. warmup_epochs=config.warmup_epochs,
  106. total_epochs=config.epoch_size,
  107. steps_per_epoch=step_size,
  108. lr_decay_mode='cosine')
  109. if args_opt.pre_trained:
  110. lr = lr[config.pretrained_epoch_size * step_size:]
  111. lr = Tensor(lr)
  112. # define optimization
  113. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
  114. config.weight_decay, config.loss_scale)
  115. # define model
  116. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
  117. print("============== Starting Training ==============")
  118. time_callback = TimeMonitor(data_size=step_size)
  119. loss_callback = LossMonitor()
  120. callbacks = [time_callback, loss_callback]
  121. if rank_id == 0:
  122. if config.save_checkpoint:
  123. config_ckpt = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  124. keep_checkpoint_max=config.keep_checkpoint_max)
  125. ckpt_callback = ModelCheckpoint(prefix="ResNet50",
  126. directory=config.save_checkpoint_path,
  127. config=config_ckpt)
  128. callbacks += [ckpt_callback]
  129. model.train(epoch_size, dataset, callbacks=callbacks)
  130. print("============== End Training ==============")