You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_equalize.py 10 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing Equalize op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset as ds
  20. import mindspore.dataset.transforms.py_transforms
  21. import mindspore.dataset.vision.c_transforms as C
  22. import mindspore.dataset.vision.py_transforms as F
  23. from mindspore import log as logger
  24. from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5
  25. DATA_DIR = "../data/dataset/testImageNetData/train/"
  26. MNIST_DATA_DIR = "../data/dataset/testMnistData"
  27. GENERATE_GOLDEN = False
  28. def test_equalize_py(plot=False):
  29. """
  30. Test Equalize py op
  31. """
  32. logger.info("Test Equalize")
  33. # Original Images
  34. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  35. transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  36. F.Resize((224, 224)),
  37. F.ToTensor()])
  38. ds_original = data_set.map(operations=transforms_original, input_columns="image")
  39. ds_original = ds_original.batch(512)
  40. for idx, (image, _) in enumerate(ds_original):
  41. if idx == 0:
  42. images_original = np.transpose(image.asnumpy(), (0, 2, 3, 1))
  43. else:
  44. images_original = np.append(images_original,
  45. np.transpose(image.asnumpy(), (0, 2, 3, 1)),
  46. axis=0)
  47. # Color Equalized Images
  48. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  49. transforms_equalize = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  50. F.Resize((224, 224)),
  51. F.Equalize(),
  52. F.ToTensor()])
  53. ds_equalize = data_set.map(operations=transforms_equalize, input_columns="image")
  54. ds_equalize = ds_equalize.batch(512)
  55. for idx, (image, _) in enumerate(ds_equalize):
  56. if idx == 0:
  57. images_equalize = np.transpose(image.asnumpy(), (0, 2, 3, 1))
  58. else:
  59. images_equalize = np.append(images_equalize,
  60. np.transpose(image.asnumpy(), (0, 2, 3, 1)),
  61. axis=0)
  62. num_samples = images_original.shape[0]
  63. mse = np.zeros(num_samples)
  64. for i in range(num_samples):
  65. mse[i] = diff_mse(images_equalize[i], images_original[i])
  66. logger.info("MSE= {}".format(str(np.mean(mse))))
  67. if plot:
  68. visualize_list(images_original, images_equalize)
  69. def test_equalize_c(plot=False):
  70. """
  71. Test Equalize Cpp op
  72. """
  73. logger.info("Test Equalize cpp op")
  74. # Original Images
  75. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  76. transforms_original = [C.Decode(), C.Resize(size=[224, 224])]
  77. ds_original = data_set.map(operations=transforms_original, input_columns="image")
  78. ds_original = ds_original.batch(512)
  79. for idx, (image, _) in enumerate(ds_original):
  80. if idx == 0:
  81. images_original = image.asnumpy()
  82. else:
  83. images_original = np.append(images_original,
  84. image.asnumpy(),
  85. axis=0)
  86. # Equalize Images
  87. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  88. transform_equalize = [C.Decode(), C.Resize(size=[224, 224]),
  89. C.Equalize()]
  90. ds_equalize = data_set.map(operations=transform_equalize, input_columns="image")
  91. ds_equalize = ds_equalize.batch(512)
  92. for idx, (image, _) in enumerate(ds_equalize):
  93. if idx == 0:
  94. images_equalize = image.asnumpy()
  95. else:
  96. images_equalize = np.append(images_equalize,
  97. image.asnumpy(),
  98. axis=0)
  99. if plot:
  100. visualize_list(images_original, images_equalize)
  101. num_samples = images_original.shape[0]
  102. mse = np.zeros(num_samples)
  103. for i in range(num_samples):
  104. mse[i] = diff_mse(images_equalize[i], images_original[i])
  105. logger.info("MSE= {}".format(str(np.mean(mse))))
  106. def test_equalize_py_c(plot=False):
  107. """
  108. Test Equalize Cpp op and python op
  109. """
  110. logger.info("Test Equalize cpp and python op")
  111. # equalize Images in cpp
  112. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  113. data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
  114. ds_c_equalize = data_set.map(operations=C.Equalize(), input_columns="image")
  115. ds_c_equalize = ds_c_equalize.batch(512)
  116. for idx, (image, _) in enumerate(ds_c_equalize):
  117. if idx == 0:
  118. images_c_equalize = image.asnumpy()
  119. else:
  120. images_c_equalize = np.append(images_c_equalize,
  121. image.asnumpy(),
  122. axis=0)
  123. # Equalize images in python
  124. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  125. data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
  126. transforms_p_equalize = mindspore.dataset.transforms.py_transforms.Compose([lambda img: img.astype(np.uint8),
  127. F.ToPIL(),
  128. F.Equalize(),
  129. np.array])
  130. ds_p_equalize = data_set.map(operations=transforms_p_equalize, input_columns="image")
  131. ds_p_equalize = ds_p_equalize.batch(512)
  132. for idx, (image, _) in enumerate(ds_p_equalize):
  133. if idx == 0:
  134. images_p_equalize = image.asnumpy()
  135. else:
  136. images_p_equalize = np.append(images_p_equalize,
  137. image.asnumpy(),
  138. axis=0)
  139. num_samples = images_c_equalize.shape[0]
  140. mse = np.zeros(num_samples)
  141. for i in range(num_samples):
  142. mse[i] = diff_mse(images_p_equalize[i], images_c_equalize[i])
  143. logger.info("MSE= {}".format(str(np.mean(mse))))
  144. if plot:
  145. visualize_list(images_c_equalize, images_p_equalize, visualize_mode=2)
  146. def test_equalize_one_channel():
  147. """
  148. Test Equalize cpp op with one channel image
  149. """
  150. logger.info("Test Equalize C Op With One Channel Images")
  151. c_op = C.Equalize()
  152. try:
  153. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  154. data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224)),
  155. lambda img: np.array(img[:, :, 0])], input_columns=["image"])
  156. data_set.map(operations=c_op, input_columns="image")
  157. except RuntimeError as e:
  158. logger.info("Got an exception in DE: {}".format(str(e)))
  159. assert "The shape" in str(e)
  160. def test_equalize_mnist_c(plot=False):
  161. """
  162. Test Equalize C op with MNIST dataset (Grayscale images)
  163. """
  164. logger.info("Test Equalize C Op With MNIST Images")
  165. data_set = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  166. ds_equalize_c = data_set.map(operations=C.Equalize(), input_columns="image")
  167. ds_orig = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  168. images = []
  169. images_trans = []
  170. labels = []
  171. for _, (data_orig, data_trans) in enumerate(zip(ds_orig, ds_equalize_c)):
  172. image_orig, label_orig = data_orig
  173. image_trans, _ = data_trans
  174. images.append(image_orig.asnumpy())
  175. labels.append(label_orig.asnumpy())
  176. images_trans.append(image_trans.asnumpy())
  177. # Compare with expected md5 from images
  178. filename = "equalize_mnist_result_c.npz"
  179. save_and_check_md5(ds_equalize_c, filename, generate_golden=GENERATE_GOLDEN)
  180. if plot:
  181. visualize_one_channel_dataset(images, images_trans, labels)
  182. def test_equalize_md5_py():
  183. """
  184. Test Equalize py op with md5 check
  185. """
  186. logger.info("Test Equalize")
  187. # First dataset
  188. data1 = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  189. transforms = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  190. F.Equalize(),
  191. F.ToTensor()])
  192. data1 = data1.map(operations=transforms, input_columns="image")
  193. # Compare with expected md5 from images
  194. filename = "equalize_01_result.npz"
  195. save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
  196. def test_equalize_md5_c():
  197. """
  198. Test Equalize cpp op with md5 check
  199. """
  200. logger.info("Test Equalize cpp op with md5 check")
  201. # Generate dataset
  202. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  203. transforms_equalize = [C.Decode(),
  204. C.Resize(size=[224, 224]),
  205. C.Equalize(),
  206. F.ToTensor()]
  207. data = data_set.map(operations=transforms_equalize, input_columns="image")
  208. # Compare with expected md5 from images
  209. filename = "equalize_01_result_c.npz"
  210. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  211. if __name__ == "__main__":
  212. test_equalize_py(plot=False)
  213. test_equalize_c(plot=False)
  214. test_equalize_py_c(plot=False)
  215. test_equalize_mnist_c(plot=True)
  216. test_equalize_one_channel()
  217. test_equalize_md5_py()
  218. test_equalize_md5_c()