|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- # TinyBERT Example
- ## Description
- [TinyBERT](https://github.com/huawei-noah/Pretrained-Model/tree/master/TinyBERT) is 7.5x smalller and 9.4x faster on inference than [BERT-base](https://github.com/google-research/bert) (the base version of BERT model) and achieves competitive performances in the tasks of natural language understanding. It performs a novel transformer distillation at both the pre-training and task-specific learning stages.
-
- ## Requirements
- - Install [MindSpore](https://www.mindspore.cn/install/en).
- - Download dataset for general distill and task distill such as GLUE.
- - Prepare a pre-trained bert model and a fine-tuned bert model for specific task such as GLUE.
-
- ## Running the Example
- ### General Distill
- - Set options in `src/gd_config.py`, including lossscale, optimizer and network.
-
- - Set options in `scripts/run_standalone_gd.sh`, including device target, data sink config, checkpoint config and dataset. Click [here](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/loading_the_datasets.html#tfrecord) for more information about dataset and the json schema file.
-
- - Run `run_standalone_gd.sh` for non-distributed general distill of BERT-base model.
-
- ``` bash
- bash scripts/run_standalone_gd.sh
- ```
- - Run `run_distribute_gd.sh` for distributed general distill of BERT-base model.
-
- ``` bash
- bash scripts/run_distribute_gd.sh DEVICE_NUM EPOCH_SIZE RANK_TABLE_FILE
- ```
-
- ### Task Distill
- Task distill has two phases, pre-distill and task distill.
- - Set options in `src/td_config.py`, including lossscale, optimizer config of phase 1 and 2, as well as network config.
-
- - Run `run_standalone_td.py` for task distill of BERT-base model.
-
- ```bash
- bash scripts/run_standalone_td.sh
- ```
-
- ## Usage
- ### General Distill
- ```
- usage: run_standalone_gd.py [--distribute DISTRIBUTE] [--device_target DEVICE_TARGET]
- [--epoch_size N] [--device_id N]
- [--enable_data_sink ENABLE_DATA_SINK] [--data_sink_steps N]
- [--save_checkpoint_steps N] [--max_ckpt_num N]
- [--load_teacher_ckpt_path LOAD_TEACHER_CKPT_PATH]
- [--data_dir DATA_DIR] [--schema_dir SCHEMA_DIR]
-
- options:
- --distribute whether to run distributely: "true" | "false"
- --device_target targeted device to run task: "Ascend" | "GPU"
- --epoch_size epoch size: N, default is 1
- --device_id device id: N, default is 0
- --enable_data_sink enable data sink: "true" | "false", default is "true"
- --data_sink_steps set data sink steps: N, default is 1
- --load_teacher_ckpt_path path of teacher checkpoint to load: PATH, default is ""
- --data_dir path to dataset directory: PATH, default is ""
- --schema_dir path to schema.json file, PATH, default is ""
-
- usage: run_distribute_gd.py [--distribute DISTRIBUTE] [--device_target DEVICE_TARGET]
- [--epoch_size N] [--device_id N] [--device_num N]
- [--enable_data_sink ENABLE_DATA_SINK] [--data_sink_steps N]
- [--save_ckpt_steps N] [--max_ckpt_num N]
- [--load_teacher_ckpt_path LOAD_TEACHER_CKPT_PATH]
- [--data_dir DATA_DIR] [--schema_dir SCHEMA_DIR]
-
- options:
- --distribute whether to run distributely: "true" | "false"
- --device_target targeted device to run task: "Ascend" | "GPU"
- --epoch_size epoch size: N, default is 1
- --device_id device id: N, default is 0
- --device_num device id to run task
- --enable_data_sink enable data sink: "true" | "false", default is "true"
- --data_sink_steps set data sink steps: N, default is 1
- --load_teacher_ckpt_path path of teacher checkpoint to load: PATH, default is ""
- --data_dir path to dataset directory: PATH, default is ""
- --schema_dir path to schema.json file, PATH, default is ""
-
- ```
-
- ## Options and Parameters
- `gd_config.py` and `td_config.py` Contain parameters of BERT model and options for optimizer and lossscale.
- ### Options:
- ```
- Parameters for lossscale:
- loss_scale_value initial value of loss scale: N, default is 2^8
- scale_factor factor used to update loss scale: N, default is 2
- scale_window steps for once updatation of loss scale: N, default is 50
-
- Parameters for task-specific config:
- load_teacher_ckpt_path teacher checkpoint to load
- load_student_ckpt_path student checkpoint to load
- data_dir training data dir
- eval_data_dir evaluation data dir
- schema_dir data schema path
- ```
-
- ### Parameters:
- ```
- Parameters for bert network:
- batch_size batch size of input dataset: N, default is 16
- seq_length length of input sequence: N, default is 128
- vocab_size size of each embedding vector: N, must be consistant with the dataset you use. Default is 30522
- hidden_size size of bert encoder layers: N
- num_hidden_layers number of hidden layers: N
- num_attention_heads number of attention heads: N, default is 12
- intermediate_size size of intermediate layer: N
- hidden_act activation function used: ACTIVATION, default is "gelu"
- hidden_dropout_prob dropout probability for BertOutput: Q
- attention_probs_dropout_prob dropout probability for BertAttention: Q
- max_position_embeddings maximum length of sequences: N, default is 512
- save_ckpt_step number for saving checkponit: N, default is 100
- max_ckpt_num maximum number for saving checkpoint: N, default is 1
- type_vocab_size size of token type vocab: N, default is 2
- initializer_range initialization value of TruncatedNormal: Q, default is 0.02
- use_relative_positions use relative positions or not: True | False, default is False
- input_mask_from_dataset use the input mask loaded form dataset or not: True | False, default is True
- token_type_ids_from_dataset use the token type ids loaded from dataset or not: True | False, default is True
- dtype data type of input: mstype.float16 | mstype.float32, default is mstype.float32
- compute_type compute type in BertTransformer: mstype.float16 | mstype.float32, default is mstype.float16
- enable_fused_layernorm use batchnorm instead of layernorm to improve performance, default is False
-
- Parameters for optimizer:
- optimizer optimizer used in the network: AdamWeightDecay
- learning_rate value of learning rate: Q
- end_learning_rate value of end learning rate: Q, must be positive
- power power: Q
- weight_decay weight decay: Q
- eps term added to the denominator to improve numerical stability: Q
- ```
-
|