You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 6.2 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train_imagenet."""
  16. import argparse
  17. import os
  18. import random
  19. import numpy as np
  20. import mindspore.nn as nn
  21. from mindspore import Tensor
  22. from mindspore import context
  23. from mindspore import ParallelMode
  24. from mindspore.communication.management import init, get_rank, get_group_size
  25. from mindspore.nn.optim.rmsprop import RMSProp
  26. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  27. from mindspore.train.model import Model
  28. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  29. from mindspore import dataset as de
  30. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  31. from mindspore.common.initializer import XavierUniform, initializer
  32. from src.config import config_gpu, config_ascend
  33. from src.dataset import create_dataset
  34. from src.inception_v3 import InceptionV3
  35. from src.lr_generator import get_lr
  36. from src.loss import CrossEntropy
  37. random.seed(1)
  38. np.random.seed(1)
  39. de.config.set_seed(1)
  40. if __name__ == '__main__':
  41. parser = argparse.ArgumentParser(description='image classification training')
  42. parser.add_argument('--dataset_path', type=str, default='', help='Dataset path')
  43. parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
  44. parser.add_argument('--is_distributed', action='store_true', default=False,
  45. help='distributed training')
  46. parser.add_argument('--platform', type=str, default='GPU', choices=('Ascend', 'GPU'), help='run platform')
  47. args_opt = parser.parse_args()
  48. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False)
  49. if os.getenv('DEVICE_ID', "not_set").isdigit():
  50. context.set_context(device_id=int(os.getenv('DEVICE_ID')))
  51. cfg = config_ascend if args_opt.platform == 'Ascend' else config_gpu
  52. # init distributed
  53. if args_opt.is_distributed:
  54. if args_opt.platform == "Ascend":
  55. init()
  56. else:
  57. init("nccl")
  58. cfg.rank = get_rank()
  59. cfg.group_size = get_group_size()
  60. parallel_mode = ParallelMode.DATA_PARALLEL
  61. context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=cfg.group_size,
  62. parameter_broadcast=True, mirror_mean=True)
  63. else:
  64. cfg.rank = 0
  65. cfg.group_size = 1
  66. # dataloader
  67. dataset = create_dataset(args_opt.dataset_path, True, cfg.rank, cfg.group_size)
  68. batches_per_epoch = dataset.get_dataset_size()
  69. # network
  70. net = InceptionV3(num_classes=cfg.num_classes, dropout_keep_prob=cfg.dropout_keep_prob, has_bias=cfg.has_bias)
  71. # loss
  72. loss = CrossEntropy(smooth_factor=cfg.smooth_factor, num_classes=cfg.num_classes, factor=cfg.aux_factor)
  73. # learning rate schedule
  74. lr = get_lr(lr_init=cfg.lr_init, lr_end=cfg.lr_end, lr_max=cfg.lr_max, warmup_epochs=cfg.warmup_epochs,
  75. total_epochs=cfg.epoch_size, steps_per_epoch=batches_per_epoch, lr_decay_mode=cfg.decay_method)
  76. lr = Tensor(lr)
  77. # optimizer
  78. decayed_params = []
  79. no_decayed_params = []
  80. for param in net.trainable_params():
  81. if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
  82. decayed_params.append(param)
  83. else:
  84. no_decayed_params.append(param)
  85. if args_opt.platform == "Ascend":
  86. for param in net.trainable_params():
  87. if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
  88. np.random.seed(seed=1)
  89. param.set_parameter_data(initializer(XavierUniform(), param.data.shape, param.data.dtype))
  90. group_params = [{'params': decayed_params, 'weight_decay': cfg.weight_decay},
  91. {'params': no_decayed_params},
  92. {'order_params': net.trainable_params()}]
  93. optimizer = RMSProp(group_params, lr, decay=0.9, weight_decay=cfg.weight_decay,
  94. momentum=cfg.momentum, epsilon=cfg.opt_eps, loss_scale=cfg.loss_scale)
  95. eval_metrics = {'Loss': nn.Loss(),
  96. 'Top1-Acc': nn.Top1CategoricalAccuracy(),
  97. 'Top5-Acc': nn.Top5CategoricalAccuracy()}
  98. if args_opt.resume:
  99. ckpt = load_checkpoint(args_opt.resume)
  100. load_param_into_net(net, ckpt)
  101. if args_opt.platform == "Ascend":
  102. loss_scale_manager = FixedLossScaleManager(cfg.loss_scale, drop_overflow_update=False)
  103. model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={'acc'}, amp_level=cfg.amp_level,
  104. loss_scale_manager=loss_scale_manager)
  105. else:
  106. model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={'acc'}, amp_level=cfg.amp_level)
  107. print("============== Starting Training ==============")
  108. loss_cb = LossMonitor(per_print_times=batches_per_epoch)
  109. time_cb = TimeMonitor(data_size=batches_per_epoch)
  110. callbacks = [loss_cb, time_cb]
  111. config_ck = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=cfg.keep_checkpoint_max)
  112. ckpoint_cb = ModelCheckpoint(prefix=f"inceptionv3-rank{cfg.rank}", directory=cfg.ckpt_path, config=config_ck)
  113. if args_opt.is_distributed & cfg.is_save_on_master:
  114. if cfg.rank == 0:
  115. callbacks.append(ckpoint_cb)
  116. model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True)
  117. else:
  118. callbacks.append(ckpoint_cb)
  119. model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True)
  120. print("train success")