|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Transformer training script."""
-
- import time
- import argparse
-
- import mindspore.common.dtype as mstype
- from mindspore.common.tensor import Tensor
- from mindspore.nn.optim import Adam
- from mindspore.train.model import Model
- from mindspore.train.loss_scale_manager import DynamicLossScaleManager
- from mindspore.train.callback import CheckpointConfig, ModelCheckpoint
- from mindspore.train.callback import Callback, TimeMonitor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- import mindspore.communication.management as D
- from mindspore.context import ParallelMode
- from mindspore import context
- from mindspore.common import set_seed
-
- from src.transformer_for_train import TransformerTrainOneStepCell, TransformerNetworkWithLoss, \
- TransformerTrainOneStepWithLossScaleCell
- from src.config import cfg, transformer_net_cfg
- from src.dataset import create_transformer_dataset
- from src.lr_schedule import create_dynamic_lr
-
- set_seed(1)
-
- def get_ms_timestamp():
- t = time.time()
- return int(round(t * 1000))
- time_stamp_init = False
- time_stamp_first = 0
-
- class LossCallBack(Callback):
- """
- Monitor the loss in training.
- If the loss is NAN or INF terminating training.
- Note:
- If per_print_times is 0 do not print loss.
- Args:
- per_print_times (int): Print loss every times. Default: 1.
- """
- def __init__(self, per_print_times=1, rank_id=0):
- super(LossCallBack, self).__init__()
- if not isinstance(per_print_times, int) or per_print_times < 0:
- raise ValueError("print_step must be int and >= 0.")
- self._per_print_times = per_print_times
- self.rank_id = rank_id
- global time_stamp_init, time_stamp_first
- if not time_stamp_init:
- time_stamp_first = get_ms_timestamp()
- time_stamp_init = True
-
- def step_end(self, run_context):
- """Monitor the loss in training."""
- global time_stamp_first
- time_stamp_current = get_ms_timestamp()
- cb_params = run_context.original_args()
- print("time: {}, epoch: {}, step: {}, outputs are {}".format(time_stamp_current - time_stamp_first,
- cb_params.cur_epoch_num, cb_params.cur_step_num,
- str(cb_params.net_outputs)))
- with open("./loss_{}.log".fromat(self.rank_id), "a+") as f:
- f.write("time: {}, epoch: {}, step: {}, outputs are {}".format(time_stamp_current - time_stamp_first,
- cb_params.cur_epoch_num,
- cb_params.cur_step_num,
- str(cb_params.net_outputs)))
- f.write('\n')
-
-
- def argparse_init():
- """
- Argparse init.
- """
- parser = argparse.ArgumentParser(description='transformer')
- parser.add_argument("--distribute", type=str, default="false", choices=['true', 'false'],
- help="Run distribute, default is false.")
- parser.add_argument("--epoch_size", type=int, default=52, help="Epoch size, default is 52.")
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
- parser.add_argument("--enable_lossscale", type=str, default="true", choices=['true', 'false'],
- help="Use lossscale or not, default is true.")
- parser.add_argument("--do_shuffle", type=str, default="true", choices=['true', 'false'],
- help="Enable shuffle for dataset, default is true.")
- parser.add_argument("--enable_data_sink", type=str, default="false", choices=['true', 'false'],
- help="Enable data sink, default is false.")
- parser.add_argument("--checkpoint_path", type=str, default="", help="Checkpoint file path")
- parser.add_argument("--enable_save_ckpt", type=str, default="true", choices=['true', 'false'],
- help="Enable save checkpoint, default is true.")
- parser.add_argument("--save_checkpoint_steps", type=int, default=2500, help="Save checkpoint steps, "
- "default is 2500.")
- parser.add_argument("--save_checkpoint_num", type=int, default=30, help="Save checkpoint numbers, default is 30.")
- parser.add_argument("--save_checkpoint_path", type=str, default="./checkpoint/", help="Save checkpoint file path, "
- "default is ./checkpoint/")
- parser.add_argument("--data_path", type=str, default="", help="Data path, it is better to use absolute path")
- return parser
-
- def run_transformer_train():
- """
- Transformer training.
- """
- parser = argparse_init()
- args, _ = parser.parse_known_args()
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id)
- context.set_context(reserve_class_name_in_scope=False, enable_auto_mixed_precision=False)
-
- if args.distribute == "true":
- device_num = args.device_num
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
- parameter_broadcast=True, device_num=device_num)
- D.init()
- rank_id = args.device_id % device_num
- else:
- device_num = 1
- rank_id = 0
- dataset = create_transformer_dataset(epoch_count=1, rank_size=device_num,
- rank_id=rank_id, do_shuffle=args.do_shuffle,
- enable_data_sink=args.enable_data_sink,
- dataset_path=args.data_path)
-
- netwithloss = TransformerNetworkWithLoss(transformer_net_cfg, True)
-
- if args.checkpoint_path:
- parameter_dict = load_checkpoint(args.checkpoint_path)
- load_param_into_net(netwithloss, parameter_dict)
-
- lr = Tensor(create_dynamic_lr(schedule="constant*rsqrt_hidden*linear_warmup*rsqrt_decay",
- training_steps=dataset.get_dataset_size()*args.epoch_size,
- learning_rate=cfg.lr_schedule.learning_rate,
- warmup_steps=cfg.lr_schedule.warmup_steps,
- hidden_size=transformer_net_cfg.hidden_size,
- start_decay_step=cfg.lr_schedule.start_decay_step,
- min_lr=cfg.lr_schedule.min_lr), mstype.float32)
- optimizer = Adam(netwithloss.trainable_params(), lr)
-
- callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(rank_id=rank_id)]
- if args.enable_save_ckpt == "true":
- if device_num == 1 or (device_num > 1 and rank_id == 0):
- ckpt_config = CheckpointConfig(save_checkpoint_steps=args.save_checkpoint_steps,
- keep_checkpoint_max=args.save_checkpoint_num)
- ckpoint_cb = ModelCheckpoint(prefix='transformer', directory=args.save_checkpoint_path, config=ckpt_config)
- callbacks.append(ckpoint_cb)
-
- if args.enable_lossscale == "true":
- scale_manager = DynamicLossScaleManager(init_loss_scale=cfg.init_loss_scale_value,
- scale_factor=cfg.scale_factor,
- scale_window=cfg.scale_window)
- update_cell = scale_manager.get_update_cell()
- netwithgrads = TransformerTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer,
- scale_update_cell=update_cell)
- else:
- netwithgrads = TransformerTrainOneStepCell(netwithloss, optimizer=optimizer)
-
- netwithgrads.set_train(True)
- model = Model(netwithgrads)
-
- enable_sink = (args.enable_data_sink == "true")
- if enable_sink:
- sink_size = args.save_checkpoint_steps
- model.train(args.epoch_size*dataset.get_dataset_size()//sink_size, dataset, callbacks=callbacks,
- dataset_sink_mode=enable_sink, sink_size=sink_size)
- else:
- model.train(args.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=enable_sink)
-
- if __name__ == '__main__':
- run_transformer_train()
|