You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_quant.py 2.0 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ tests for quant """
  16. import mindspore.context as context
  17. from mindspore import nn
  18. from mindspore.nn.layer import combined
  19. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  20. class LeNet5(nn.Cell):
  21. """
  22. Lenet network
  23. Args:
  24. num_class (int): Num classes. Default: 10.
  25. Returns:
  26. Tensor, output tensor
  27. Examples:
  28. >>> LeNet(num_class=10)
  29. """
  30. def __init__(self, num_class=10):
  31. super(LeNet5, self).__init__()
  32. self.num_class = num_class
  33. self.conv1 = combined.Conv2d(
  34. 1, 6, kernel_size=5, batchnorm=True, activation='relu6')
  35. self.conv2 = combined.Conv2d(6, 16, kernel_size=5, activation='relu')
  36. self.fc1 = combined.Dense(16 * 5 * 5, 120, activation='relu')
  37. self.fc2 = combined.Dense(120, 84, activation='relu')
  38. self.fc3 = combined.Dense(84, self.num_class)
  39. self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
  40. self.flattern = nn.Flatten()
  41. def construct(self, x):
  42. x = self.conv1(x)
  43. x = self.bn(x)
  44. x = self.relu(x)
  45. x = self.max_pool2d(x)
  46. x = self.conv2(x)
  47. x = self.max_pool2d(x)
  48. x = self.flattern(x)
  49. x = self.fc1(x)
  50. x = self.fc2(x)
  51. x = self.fc3(x)
  52. return x