You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops.py 43 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test ops """
  16. import functools
  17. import numpy as np
  18. from mindspore import ops
  19. from mindspore.ops import functional as F
  20. from mindspore.ops import operations as P
  21. from mindspore.ops.operations import _grad_ops as G
  22. import mindspore.ops.composite as C
  23. import mindspore.nn as nn
  24. from mindspore import Tensor
  25. from mindspore.common import dtype as mstype
  26. from ..ut_filter import non_graph_engine
  27. from ....mindspore_test_framework.mindspore_test import mindspore_test
  28. from ....mindspore_test_framework.pipeline.forward.compile_forward\
  29. import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
  30. pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  31. from ....mindspore_test_framework.pipeline.gradient.compile_gradient\
  32. import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
  33. class InputBackward(nn.Cell):
  34. def __init__(self, network):
  35. super(InputBackward, self).__init__()
  36. self.network = network
  37. self.network.set_train()
  38. self.grad = C.grad_all_with_sens
  39. def construct(self, x1, x2, x3, sens):
  40. return self.grad(self.network)(x1, x2, x3, sens)
  41. class NetForTupleInput(nn.Cell):
  42. def __init__(self, op):
  43. super(NetForTupleInput, self).__init__()
  44. self.op = op
  45. def construct(self, x1, x2):
  46. return self.op((x1, x2))
  47. class StridedSlicessdNet(nn.Cell):
  48. def __init__(self):
  49. super(StridedSlicessdNet, self).__init__()
  50. self.rank = P.Rank()
  51. def construct(self, x1):
  52. return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
  53. class NetForConcat(nn.Cell):
  54. def __init__(self):
  55. super(NetForConcat, self).__init__()
  56. self.concat = P.Concat()
  57. def construct(self, x1):
  58. return self.concat((x1, x1))
  59. class NetForConcat1(nn.Cell):
  60. def __init__(self):
  61. super(NetForConcat1, self).__init__()
  62. self.concat = P.Concat()
  63. def construct(self, x1, x2):
  64. return self.concat((x1, x2))
  65. class NetForPackInput(nn.Cell):
  66. def __init__(self, op):
  67. super(NetForPackInput, self).__init__()
  68. self.op = op
  69. self.mul = P.Mul()
  70. def construct(self, *args):
  71. t = ()
  72. for i in range(len(args)):
  73. t = t + (self.mul(args[i], args[i]),)
  74. return self.op(t)
  75. class NetForUnpackInput(nn.Cell):
  76. def __init__(self, op):
  77. super(NetForUnpackInput, self).__init__()
  78. self.op = op
  79. self.mul = P.Mul()
  80. def construct(self, x1):
  81. return self.op((self.mul(x1, x1)))
  82. class NetForFlatten(nn.Cell):
  83. def __init__(self):
  84. super(NetForFlatten, self).__init__()
  85. self.flatten = P.Flatten()
  86. def construct(self, x, y):
  87. return self.flatten(x) + y
  88. class NetForFlatten0D(nn.Cell):
  89. def __init__(self):
  90. super(NetForFlatten0D, self).__init__()
  91. self.flatten = P.Flatten()
  92. def construct(self, x):
  93. return self.flatten(x)
  94. class ArgmaxNet(nn.Cell):
  95. def __init__(self):
  96. super(ArgmaxNet, self).__init__()
  97. self.argmax = P.Argmax(axis=1)
  98. def construct(self, input):
  99. return self.argmax(input)
  100. class ArgminNet(nn.Cell):
  101. def __init__(self):
  102. super(ArgminNet, self).__init__()
  103. self.argmin = P.Argmin(axis=1)
  104. def construct(self, input):
  105. return self.argmin(input)
  106. class CumSumNet(nn.Cell):
  107. def __init__(self):
  108. super(CumSumNet, self).__init__()
  109. self.cumsum = P.CumSum()
  110. self.axis = 1
  111. def construct(self, input):
  112. return self.cumsum(input, self.axis)
  113. class SummaryNet(nn.Cell):
  114. def __init__(self,):
  115. super(SummaryNet, self).__init__()
  116. self.s = P.ScalarSummary()
  117. self.add = P.TensorAdd()
  118. def construct(self, x, y):
  119. self.s("x1", x)
  120. return self.add(x, y)
  121. class HistogramSummaryNet(nn.Cell):
  122. def __init__(self,):
  123. super(HistogramSummaryNet, self).__init__()
  124. self.summary = P.HistogramSummary()
  125. self.add = P.TensorAdd()
  126. def construct(self, x, y):
  127. out = self.add(x, y)
  128. string_in = "out"
  129. self.summary(string_in, out)
  130. return out
  131. test_case_math_ops = [
  132. ('Neg', {
  133. 'block': P.Neg(),
  134. 'desc_inputs': [[1, 3, 4, 4]],
  135. 'desc_bprop': [[1, 3, 4, 4]]}),
  136. ('Sub', {
  137. 'block': P.Sub(),
  138. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  139. 'desc_bprop': [[2, 3, 3, 5]]}),
  140. ('TensorAdd', {
  141. 'block': P.TensorAdd(),
  142. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  143. 'desc_bprop': [[2, 3, 3, 5]]}),
  144. ('Mul0', {
  145. 'block': P.Mul(),
  146. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  147. 'desc_bprop': [[2, 3, 3, 5]]}),
  148. ('Mul1', {
  149. 'block': P.Mul(),
  150. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  151. 'desc_bprop': [[2, 3, 3, 5]]}),
  152. ('Mul2', {
  153. 'block': P.Mul(),
  154. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  155. 'desc_bprop': [[2, 3, 3, 5]],
  156. 'skip': ['backward']}),
  157. ('Mul3', {
  158. 'block': P.Mul(),
  159. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  160. 'desc_bprop': [[2, 3, 3, 5]],
  161. 'skip': ['backward']}),
  162. ('Mul4', {
  163. 'block': P.Mul(),
  164. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  165. 'desc_bprop': [[2, 3, 3, 5]],
  166. 'skip': ['backward']}),
  167. ('Add0', {
  168. 'block': P.TensorAdd(),
  169. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  170. 'desc_bprop': [[2, 3, 3, 5]]}),
  171. ('Add1', {
  172. 'block': P.TensorAdd(),
  173. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  174. 'desc_bprop': [[2, 3, 3, 5]],
  175. 'skip': ['backward']}),
  176. ('Add2', {
  177. 'block': P.TensorAdd(),
  178. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  179. 'desc_bprop': [[2, 3, 3, 5]],
  180. 'skip': ['backward']}),
  181. ('Add3', {
  182. 'block': P.TensorAdd(),
  183. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  184. 'desc_bprop': [[2, 3, 3, 5]],
  185. 'skip': ['backward']}),
  186. ('Add4', {
  187. 'block': P.TensorAdd(),
  188. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  189. 'desc_bprop': [[2, 3, 3, 5]],
  190. 'skip': ['backward']}),
  191. ('Minimum', {
  192. 'block': P.Minimum(),
  193. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  194. 'desc_bprop': [[2, 3, 3, 5]]}),
  195. ('Pow_0', {
  196. 'block': P.Pow(),
  197. 'desc_const': [2.0],
  198. 'desc_inputs': [[2, 3, 3, 5]],
  199. 'desc_bprop': [[2, 3, 3, 5]]}),
  200. ('Pow_1', {
  201. 'block': P.Pow(),
  202. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  203. 'desc_bprop': [[2, 3, 3, 5]]}),
  204. ('Exp', {
  205. 'block': P.Exp(),
  206. 'desc_inputs': [[2, 3]],
  207. 'desc_bprop': [[2, 3]]}),
  208. ('Erf', {
  209. 'block': P.Erf(),
  210. 'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
  211. 'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}),
  212. ('Floor', {
  213. 'block': P.Floor(),
  214. 'desc_inputs': [[2, 512, 56, 56]],
  215. 'desc_bprop': [[2, 512, 56, 56]],
  216. 'skip': ['backward']}),
  217. ('ACos', {
  218. 'block': P.ACos(),
  219. 'desc_inputs': [[2, 3]],
  220. 'desc_bprop': [[2, 3]]}),
  221. ('Acosh', {
  222. 'block': P.Acosh(),
  223. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16))],
  224. 'skip': ['backward']}),
  225. ('Sin', {
  226. 'block': P.Sin(),
  227. 'desc_inputs': [[2, 3]],
  228. 'desc_bprop': [[2, 3]]}),
  229. ('Reciprocal', {
  230. 'block': P.Reciprocal(),
  231. 'desc_inputs': [[2, 3, 3, 5]],
  232. 'desc_bprop': [[2, 3, 3, 5]]}),
  233. ('Minimum_0', {
  234. 'block': P.Minimum(),
  235. 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
  236. 'desc_bprop': [[2, 3, 3, 5]]}),
  237. ('Maximum', {
  238. 'block': P.Maximum(),
  239. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  240. 'desc_bprop': [[2, 3, 3, 5]]}),
  241. ('Maximum_0', {
  242. 'block': P.Maximum(),
  243. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  244. 'desc_bprop': [[2, 3, 3, 5]]}),
  245. ('MaximumGrad', {
  246. 'block': G.MaximumGrad(),
  247. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  248. 'skip': ['backward']}),
  249. ('MinimumGrad', {
  250. 'block': G.MinimumGrad(),
  251. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  252. 'skip': ['backward']}),
  253. ('StridedSlice', {
  254. 'block': P.StridedSlice(),
  255. 'desc_const': [(0, 1, 2, 1),
  256. (2, 3, 3, 4),
  257. (1, 1, 1, 1)],
  258. 'desc_inputs': [[2, 3, 3, 5]],
  259. 'desc_bprop': [[2, 2, 1, 3]]}),
  260. ('Slice_1', {
  261. 'block': P.Slice(),
  262. 'desc_const': [(0, 1, 2, 1),
  263. (1, 1, 1, 2)],
  264. 'desc_inputs': [[2, 3, 3, 5]],
  265. 'desc_bprop': [[1, 1, 1, 2]]}),
  266. ('StridedSliceGrad', {
  267. 'block': G.StridedSliceGrad(),
  268. 'desc_const': [(64, 1, 1024),
  269. (0, 1, 0),
  270. (64, 2, 1024),
  271. (1, 1, 1)],
  272. 'desc_inputs': [[64, 128, 1024]],
  273. 'skip': ['backward']}),
  274. ('RandomChoiceWithMask', {
  275. 'block': P.RandomChoiceWithMask(256),
  276. 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
  277. 'desc_bprop': [[256,4], [256,4]],
  278. 'skip': ['backward']}),
  279. ('LessEqual', {
  280. 'block': P.LessEqual(),
  281. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  282. Tensor(np.random.rand(4).astype(np.float16))],
  283. 'skip': ['backward']}),
  284. ('Less', {
  285. 'block': P.Less(),
  286. 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
  287. 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
  288. 'skip': ['backward']}),
  289. ('RealDiv_0', {
  290. 'block': P.RealDiv(),
  291. 'desc_const': [Tensor(2048.0), Tensor(0.0)],
  292. 'desc_inputs': [],
  293. 'skip': ['backward']}),
  294. ('RealDiv', {
  295. 'block': P.RealDiv(),
  296. 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
  297. 'desc_bprop': [[4]]}),
  298. ('RealDiv_1', {
  299. 'block': P.RealDiv(),
  300. 'desc_inputs': [[512, 1024], [512, 1024]],
  301. 'desc_bprop': [[512, 1024]]}),
  302. ('FloorDiv', {
  303. 'block': P.FloorDiv(),
  304. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  305. Tensor(np.random.rand(4).astype(np.float16))],
  306. 'skip': ['backward']}),
  307. ('FloorMod', {
  308. 'block': P.FloorMod(),
  309. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  310. Tensor(np.random.rand(4).astype(np.float16))],
  311. 'skip': ['backward']}),
  312. ('identity', {
  313. 'block': ops.functional.identity,
  314. 'desc_inputs': [[2, 2]],
  315. 'skip': ['backward']}),
  316. ('MatMul_1', {
  317. 'block': P.MatMul(transpose_a=False, transpose_b=False),
  318. 'desc_inputs': [[1024, 160], [160, 1024]],
  319. 'desc_bprop': [[1024, 1024]]}),
  320. ('MatMul_2', {
  321. 'block': P.MatMul(transpose_a=True, transpose_b=True),
  322. 'desc_inputs': [[160, 1024], [1024, 160]],
  323. 'desc_bprop': [[1024, 1024]]}),
  324. ('Sub', {
  325. 'block': P.Sub(),
  326. 'desc_inputs': [[3], [3]],
  327. 'desc_bprop': [[3]]}),
  328. ('TruncatedNormal', {
  329. 'block': P.TruncatedNormal(),
  330. 'desc_const': [Tensor(np.array([1, 2, 3]))],
  331. 'desc_inputs': [],
  332. 'skip': ['backward'],
  333. 'add_fake_input': True}),
  334. ('Select', {
  335. 'block': P.Select(),
  336. 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
  337. [2, 3], [2, 3]],
  338. 'desc_bprop': [[2, 3]]}),
  339. ('Rank', {
  340. 'block': P.Rank(),
  341. 'desc_inputs': [[2, 3]],
  342. 'skip': ['backward']}),
  343. ('InvertPermutation', {
  344. 'block': P.InvertPermutation(),
  345. 'desc_const': [(0, 3, 1, 2)],
  346. 'desc_inputs': [],
  347. 'skip': ['backward']}),
  348. ('Square', {
  349. 'block': P.Square(),
  350. 'desc_inputs': [[4]],
  351. 'desc_bprop': [[4]]}),
  352. ('Rsqrt', {
  353. 'block': P.Rsqrt(),
  354. 'desc_inputs': [[4]],
  355. 'desc_bprop': [[4]]}),
  356. ('Sqrt', {
  357. 'block': P.Sqrt(),
  358. 'desc_inputs': [[4]],
  359. 'desc_bprop': [[4]]}),
  360. ('RealDiv', {
  361. 'block': P.RealDiv(),
  362. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  363. 'desc_bprop': [[2, 3, 4, 5]]}),
  364. ('Div', {
  365. 'block': P.Div(),
  366. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  367. 'desc_bprop': [[2, 3, 4, 5]]}),
  368. ('Equal', {
  369. 'block': P.Equal(),
  370. 'desc_inputs': [[3, 4, 5], [4, 5]],
  371. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  372. ('NotEqual', {
  373. 'block': P.NotEqual(),
  374. 'desc_inputs': [[4, 1], [2, 3, 4, 5]],
  375. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  376. ('NotEqual_0', {
  377. 'block': P.NotEqual(),
  378. 'desc_inputs': [ 1, [2, 3, 4, 5]],
  379. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
  380. 'skip': ['backward']}),
  381. ('Greater', {
  382. 'block': P.Greater(),
  383. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  384. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  385. ('GreaterEqual', {
  386. 'block': P.GreaterEqual(),
  387. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  388. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  389. ('LogicalNot', {
  390. 'block': P.LogicalNot(),
  391. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
  392. 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
  393. ('LogicalAnd', {
  394. 'block': P.LogicalAnd(),
  395. 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
  396. 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
  397. ('LogicalOr', {
  398. 'block': P.LogicalOr(),
  399. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
  400. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  401. ('NpuAllocFloatStatus', {
  402. 'block': P.NPUAllocFloatStatus(),
  403. 'desc_inputs': [],
  404. 'add_fack_input': True,
  405. 'fack_input_type': np.float32,
  406. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  407. 'skip': ['backward']}),
  408. ('NpuGetFloatStatus', {
  409. 'block': P.NPUGetFloatStatus(),
  410. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  411. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  412. 'skip': ['backward']}),
  413. ('NpuClearFloatStatus', {
  414. 'block': P.NPUClearFloatStatus(),
  415. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  416. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  417. 'skip': ['backward']}),
  418. ('CheckValid', {
  419. 'block': P.CheckValid(),
  420. 'desc_inputs': [[20000, 4], [3]],
  421. 'desc_bprop': [[20000]],
  422. 'skip': ['backward']}),
  423. ('NMSWithMask', {
  424. 'block': P.NMSWithMask(0.5),
  425. 'desc_inputs': [[128, 5]],
  426. 'desc_bprop': [[128, 5], [128], [128]],
  427. 'skip': ['backward']}),
  428. ('Abs', {
  429. 'block': P.Abs(),
  430. 'desc_inputs': [[4]],
  431. 'desc_bprop': [[4]]}),
  432. ('CumSum', {
  433. 'block': P.CumSum(),
  434. 'desc_const': [0],
  435. 'desc_inputs': [Tensor(np.array([[3, 4],[1, 6]]).astype(np.float16))],
  436. 'desc_bprop': [Tensor(np.array([[3, 4],[4, 10]]).astype(np.float16))]}),
  437. ('ReduceSum_3', {
  438. 'block': P.ReduceSum(),
  439. 'desc_const': [0],
  440. 'desc_inputs': [[3, 2]],
  441. 'desc_bprop': [[2]]}),
  442. ('ReduceSum_4', {
  443. 'block': P.ReduceSum(keep_dims=True),
  444. 'desc_const': [0],
  445. 'desc_inputs': [[3, 2]],
  446. 'desc_bprop': [[1, 2]]}),
  447. ('ReduceSum_5', {
  448. 'block': P.ReduceSum(keep_dims=True),
  449. 'desc_inputs': [[2, 3, 4]],
  450. 'desc_bprop': [[1, 1, 1]]}),
  451. ('ReduceSum_6', {
  452. 'block': P.ReduceSum(),
  453. 'desc_inputs': [[2, 3, 4]],
  454. 'desc_bprop': [[1]]}),
  455. ('Sum_0', {
  456. 'block': P.ReduceSum(),
  457. 'desc_const': [(1,)],
  458. 'desc_inputs': [[3, 2]],
  459. 'desc_bprop': [[3]]}),
  460. ('Sum_1', {
  461. 'block': P.ReduceSum(keep_dims=True),
  462. 'desc_const': [(1,)],
  463. 'desc_inputs': [[3, 2]],
  464. 'desc_bprop': [[3, 1]]}),
  465. ('Sum_2', {
  466. 'block': P.ReduceSum(),
  467. 'desc_const': [(0, 1)],
  468. 'desc_inputs': [[3, 2]],
  469. 'desc_bprop': [[1]]}),
  470. ('Sum_3', {
  471. 'block': P.ReduceSum(),
  472. 'desc_const': [0],
  473. 'desc_inputs': [[3, 2]],
  474. 'desc_bprop': [[2]]}),
  475. ('Sum_4', {
  476. 'block': P.ReduceSum(keep_dims=True),
  477. 'desc_const': [0],
  478. 'desc_inputs': [[3, 2]],
  479. 'desc_bprop': [[1, 2]]}),
  480. ('Sum_5', {
  481. 'block': P.ReduceSum(keep_dims=True),
  482. 'desc_const': [()],
  483. 'desc_inputs': [[2, 3, 4]],
  484. 'desc_bprop': [[1, 1, 1]]}),
  485. ('Sum_6', {
  486. 'block': P.ReduceSum(),
  487. 'desc_const': [()],
  488. 'desc_inputs': [[2, 3, 4]],
  489. 'desc_bprop': [[1]]}),
  490. ('Sign', {
  491. 'block': P.Sign(),
  492. 'desc_inputs': [[3]],
  493. 'desc_bprop': [[3]]}),
  494. ('Round', {
  495. 'block': P.Round(),
  496. 'desc_inputs': [[3]],
  497. 'desc_bprop': [[3]]}),
  498. ('Atan2', {
  499. 'block': P.Atan2(),
  500. 'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
  501. Tensor(np.array([1, 1]).astype(np.float32))],
  502. 'desc_bprop': [[2]]})
  503. ]
  504. test_case_nn_ops = [
  505. ('BiasAdd', {
  506. 'block': P.BiasAdd(),
  507. 'desc_inputs': [[1, 3, 3, 3], [3]],
  508. 'desc_bprop': [[1, 3, 3, 3]]}),
  509. ('BiasAddGrad', {
  510. 'block': G.BiasAddGrad(),
  511. 'desc_inputs': [[1, 3, 3, 3]],
  512. 'skip': ['backward']}),
  513. ('Gelu', {
  514. 'block': P.Gelu(),
  515. 'desc_inputs': [[1, 3, 4, 4]],
  516. 'desc_bprop': [[1, 3, 4, 4]]}),
  517. ('GeluGrad', {
  518. 'block': G.GeluGrad(),
  519. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  520. 'desc_bprop': [[2, 2]],
  521. 'skip': ['backward']}),
  522. ('Tanh', {
  523. 'block': P.Tanh(),
  524. 'desc_inputs': [[1, 3, 4, 4]],
  525. 'desc_bprop': [[1, 3, 4, 4]]}),
  526. ('TanhGrad', {
  527. 'block': G.TanhGrad(),
  528. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  529. 'desc_bprop': [[1, 3, 4, 4]],
  530. 'skip': ['backward']}),
  531. ('ReLU', {
  532. 'block': P.ReLU(),
  533. 'desc_inputs': [[1, 3, 4, 4]],
  534. 'desc_bprop': [[1, 3, 4, 4]]}),
  535. ('ReLU6', {
  536. 'block': P.ReLU6(),
  537. 'desc_inputs': [[1, 3, 4, 4]],
  538. 'desc_bprop': [[1, 3, 4, 4]]}),
  539. ('ReLUV2', {
  540. 'block': P.ReLUV2(),
  541. 'desc_inputs': [[1, 3, 4, 4]],
  542. 'desc_bprop': [[1, 3, 4, 4], [1, 3, 4, 4]]}),
  543. ('ReLUGrad', {
  544. 'block': G.ReluGrad(),
  545. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  546. 'skip': ['backward']}),
  547. ('Elu', {
  548. 'block': P.Elu(),
  549. 'desc_inputs': [[2, 3, 4]],
  550. 'desc_bprop': [[2, 3, 4]]}),
  551. ('EluGrad', {
  552. 'block': G.EluGrad(),
  553. 'desc_inputs': [[2, 3, 4], [2, 3, 4]],
  554. 'desc_bprop': [[2, 3, 4]],
  555. 'skip': ['backward']}),
  556. ('Sigmoid', {
  557. 'block': P.Sigmoid(),
  558. 'desc_inputs': [[1, 3, 4, 4]],
  559. 'desc_bprop': [[1, 3, 4, 4]]}),
  560. ('MaxPool', {
  561. 'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  562. 'desc_inputs': [[100, 3, 28, 28]],
  563. 'desc_bprop': [[100, 3, 14, 14]]}),
  564. ('MaxPoolGrad', {
  565. 'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  566. 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
  567. 'desc_bprop': [[3, 4, 6, 6]],
  568. 'skip': ['backward']}),
  569. ('AvgPool', {
  570. 'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  571. 'desc_inputs': [[100, 3, 28, 28]],
  572. 'desc_bprop': [[100, 3, 14, 14]]}),
  573. ('AvgPoolGrad', {
  574. 'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  575. 'desc_const': [(3, 4, 6, 6)],
  576. 'const_first': True,
  577. 'desc_inputs': [[3, 4, 6, 6]],
  578. 'desc_bprop': [[3, 4, 6, 6]],
  579. 'skip': ['backward']}),
  580. ('MaxPoolWithArgmax', {
  581. 'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
  582. 'desc_inputs': [[128, 32, 32, 64]],
  583. 'desc_bprop': [[128, 32, 8, 16], [128, 32, 8, 16]]}),
  584. ('SoftmaxCrossEntropyWithLogits', {
  585. 'block': P.SoftmaxCrossEntropyWithLogits(),
  586. 'desc_inputs': [[1, 10], [1, 10]],
  587. 'desc_bprop': [[1], [1, 10]],
  588. 'skip': ['backward_exec']}),
  589. ('Flatten', {
  590. 'block': P.Flatten(),
  591. 'desc_inputs': [[128, 32, 32, 64]],
  592. 'desc_bprop': [[128 * 32 * 8 * 16]]}),
  593. ('LogSoftmax', {
  594. 'block': P.LogSoftmax(),
  595. 'desc_inputs': [[64, 2]],
  596. 'desc_bprop': [[160, 30522]]}),
  597. ('LogSoftmaxGrad', {
  598. 'block': G.LogSoftmaxGrad(),
  599. 'desc_inputs': [[16, 1234], [16, 1234]],
  600. 'desc_bprop': [[64, 2]],
  601. 'skip': ['backward']}),
  602. ('LayerNorm', {
  603. 'block': P.LayerNorm(),
  604. 'desc_inputs': [[2, 16], [16], [16]],
  605. 'desc_bprop': [[2, 16], [2, 16], [2, 16]]}),
  606. ('LayerNormGrad', {
  607. 'block': G.LayerNormGrad(),
  608. 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
  609. 'desc_bprop': [[2, 16], [16], [16]],
  610. 'skip': ['backward']}),
  611. ('FusedBatchNorm', {
  612. 'block': P.FusedBatchNorm(),
  613. 'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
  614. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  615. 'skip': []}),
  616. ('FusedBatchNormGrad', {
  617. 'block': G.FusedBatchNormGrad(),
  618. 'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
  619. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  620. 'skip': ['backward']}),
  621. ('BatchNorm', {
  622. 'block': P.BatchNorm(),
  623. 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
  624. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  625. 'skip': []}),
  626. ('BatchNormGrad', {
  627. 'block': G.BatchNormGrad(),
  628. 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64]],
  629. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  630. 'skip': ['backward']}),
  631. ('ApplyMomentum', {
  632. 'block': P.ApplyMomentum(),
  633. 'desc_inputs': [[128, 32, 32, 64], [128, 32, 32, 64],
  634. [32, 32, 64], [32, 32, 64], [32, 32, 64]],
  635. 'desc_bprop': [[128, 32, 32, 64]],
  636. 'skip': ['backward']}),
  637. ('TopK', {
  638. 'block': P.TopK(),
  639. 'desc_const': [5],
  640. 'desc_inputs': [[20, 20, 10]],
  641. 'desc_bprop': [[20, 20, 5]],
  642. 'skip': ['backward']}),
  643. ('GatherV2_0', {
  644. 'block': P.GatherV2(),
  645. 'desc_const': [0],
  646. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  647. 'desc_bprop': [[2, 1, 2]]}),
  648. ('GatherV2_1', {
  649. 'block': P.GatherV2(),
  650. 'desc_const': [2],
  651. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  652. 'desc_bprop': [[3, 1, 2]]}),
  653. ('GatherV2_2', {
  654. 'block': P.GatherV2(),
  655. 'desc_const': [0],
  656. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  657. 'desc_bprop': [[3, 2, 1, 3]]}),
  658. ('GatherV2_3', {
  659. 'block': P.GatherV2(),
  660. 'desc_const': [2],
  661. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  662. 'desc_bprop': [[3, 1, 3, 2]]}),
  663. ('GatherV2_4', {
  664. 'block': P.GatherV2(),
  665. 'desc_const': [1],
  666. 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
  667. 'desc_bprop': [[32, 1, 1024]]}),
  668. ('GatherV2_5', {
  669. 'block': P.GatherV2(),
  670. 'desc_const': [-1],
  671. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  672. 'desc_bprop': [[3, 1, 2]]}),
  673. ('GatherV2_6', {
  674. 'block': P.GatherV2(),
  675. 'desc_const': [0],
  676. 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
  677. 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
  678. ('UnsortedSegmentSum', {
  679. 'block': P.UnsortedSegmentSum(),
  680. 'desc_const': [1280],
  681. 'desc_inputs': [[1280,1024], Tensor(np.ones(1280).astype(np.int32))],
  682. 'desc_bprop': [[8192,1024]],
  683. 'skip': ['backward']}),
  684. ('UnsortedSegmentSum_1', {
  685. 'block': P.UnsortedSegmentSum(),
  686. 'desc_const': [4],
  687. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  688. 'desc_bprop': [[4, 1, 3]],
  689. 'skip': ['backward']}),
  690. ('DropoutGenMask', {
  691. 'block': P.DropoutGenMask(),
  692. 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
  693. 'desc_inputs': [],
  694. 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
  695. 'skip': ['backward']}),
  696. ('DropoutDoMask', {
  697. 'block': P.DropoutDoMask(),
  698. 'desc_const': [Tensor(0.5)],
  699. 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
  700. 'desc_bprop': [[64, 12, 128, 128]]}),
  701. ('Dropout', {
  702. 'block': nn.Dropout(0.5),
  703. 'desc_inputs': [[64, 12, 128, 128]],
  704. 'desc_bprop': [[64, 12, 128, 128]]}),
  705. ('ReduceMean0', {
  706. 'block': P.ReduceMean(),
  707. 'desc_const': [(2,)],
  708. 'desc_inputs': [[3, 2, 2]],
  709. 'desc_bprop': [[3, 2]]}),
  710. ('ReduceMean1', {
  711. 'block': P.ReduceMean(),
  712. 'desc_const': [2],
  713. 'desc_inputs': [[3, 2, 2]],
  714. 'desc_bprop': [[3, 2]]}),
  715. ('All', {
  716. 'block': P.ReduceAll(),
  717. 'desc_const': [(1,)],
  718. 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
  719. 'desc_bprop': [[3]],
  720. 'skip': ['backward']}),
  721. ('DescConst', {
  722. 'block': Tensor(np.array([2], np.float32)),
  723. 'desc_inputs': [],
  724. 'desc_bprop': [[1]],
  725. 'skip': ['backward'],
  726. 'add_fake_input': True}),
  727. ('Fill', {
  728. 'block': P.Fill(),
  729. 'desc_const': [mstype.float32, (2, 3), 1.0],
  730. 'desc_inputs': [],
  731. 'desc_bprop': [[2, 3]],
  732. 'skip': ['backward'],
  733. 'add_fake_input': True}),
  734. ('OnesLike', {
  735. 'block': P.OnesLike(),
  736. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  737. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  738. }),
  739. ('ZerosLike', {
  740. 'block': P.ZerosLike(),
  741. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  742. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  743. }),
  744. ('Softmax', {
  745. 'block': P.Softmax(),
  746. 'desc_inputs': [[5, 5]],
  747. 'desc_bprop': [[5, 5]]}),
  748. ('DepthwiseConv2dNative_1', {
  749. 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
  750. 'desc_inputs': [[10, 32, 32, 32], [3, 32, 3, 3]],
  751. 'desc_bprop': [[10, 30, 16, 16]]}),
  752. ('DepthwiseConv2dNative_2', {
  753. 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
  754. 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
  755. 'desc_bprop': [[2592, 2048, 2, 2]]}),
  756. ('SigmoidCrossEntropyWithLogits', {
  757. 'block': P.SigmoidCrossEntropyWithLogits(),
  758. 'desc_inputs': [[128, 10], [128, 10]],
  759. 'desc_bprop': [[128, 10]]}),
  760. ('Pad', {
  761. 'block': P.Pad(((1, 2), (2, 3))),
  762. 'desc_inputs': [[7, 7]],
  763. 'desc_bprop': [[10, 12]]}),
  764. ('BinaryCrossEntropy', {
  765. 'block': P.BinaryCrossEntropy(),
  766. 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
  767. 'desc_bprop': []}),
  768. ('SparseApplyAdagrad', {
  769. 'block': P.SparseApplyAdagrad(0.5),
  770. 'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
  771. 'desc_bprop': [3, 3],
  772. 'skip': ['backward']}),
  773. ('Flatten_1', {
  774. 'block': NetForFlatten(),
  775. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  776. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  777. 'skip': ['backward']}),
  778. ('Flatten_2', {
  779. 'block': NetForFlatten(),
  780. 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
  781. 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
  782. 'skip': ['backward']}),
  783. ('ArgmaxNet', {
  784. 'block': ArgmaxNet(),
  785. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  786. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  787. 'skip': ['backward']}),
  788. ('ArgminNet', {
  789. 'block': ArgminNet(),
  790. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  791. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  792. 'skip': ['backward']}),
  793. ('CumSumNet', {
  794. 'block': CumSumNet(),
  795. 'desc_const': [0],
  796. 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))],
  797. 'desc_bprop': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))]}),
  798. ('OneHot', {
  799. 'block': P.OneHot(),
  800. 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
  801. 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
  802. 'desc_bprop': [[64, 2]]}),
  803. ('ReduceProd_0', {
  804. 'block': P.ReduceProd(),
  805. 'desc_const': [0],
  806. 'desc_inputs': [[3, 2]],
  807. 'desc_bprop': [[2]]}),
  808. ('ReduceProd_1', {
  809. 'block': P.ReduceProd(keep_dims=True),
  810. 'desc_const': [0],
  811. 'desc_inputs': [[3, 2]],
  812. 'desc_bprop': [[1, 2]]}),
  813. ('CumProd', {
  814. 'block': P.CumProd(),
  815. 'desc_const': [0],
  816. 'desc_inputs': [[3, 2]],
  817. 'desc_bprop': [[3, 2]]}),
  818. ('ApplyFtrl', {
  819. 'block': P.ApplyFtrl(),
  820. 'desc_const': [0.001, 0.0, 0.0, -0.5],
  821. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  822. 'desc_bprop': [3, 3],
  823. 'skip': ['backward']}),
  824. ('ApplyRMSProp', {
  825. 'block': P.ApplyRMSProp(),
  826. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  827. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  828. 'desc_bprop': [3, 3],
  829. 'skip': ['backward']}),
  830. ('ApplyCenteredRMSProp', {
  831. 'block': P.ApplyCenteredRMSProp(),
  832. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  833. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3]],
  834. 'desc_bprop': [3, 3],
  835. 'skip': ['backward']}),
  836. ('L2Loss_1', {
  837. 'block': P.L2Loss(),
  838. 'desc_inputs': [Tensor(np.array([1, 2, 3, 4]), mstype.float16)],
  839. 'desc_bprop': []}),
  840. ('L2Loss_2', {
  841. 'block': P.L2Loss(),
  842. 'desc_inputs': [Tensor(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]), mstype.float16)],
  843. 'desc_bprop': []}),
  844. ]
  845. test_case_array_ops = [
  846. ('SpaceToDepth', {
  847. 'block': P.SpaceToDepth(2),
  848. 'desc_inputs': [[1, 3, 2, 2]],
  849. 'desc_bprop': [[1, 12, 1, 1]]}),
  850. ('DepthToSpace', {
  851. 'block': P.DepthToSpace(2),
  852. 'desc_inputs': [[1, 12, 1, 1]],
  853. 'desc_bprop': [[1, 3, 2, 2]]}),
  854. ('Split', {
  855. 'block': P.Split(1, 2),
  856. 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
  857. 'skip': ['backward']}),
  858. ('Argmax', {
  859. 'block': P.Argmax(),
  860. 'desc_inputs': [[128, 32, 32, 64]],
  861. 'desc_bprop': [0],
  862. 'skip': ['backward']}),
  863. ('Argmin', {
  864. 'block': P.Argmin(),
  865. 'desc_inputs': [[128, 32, 32, 64]],
  866. 'desc_bprop': [1],
  867. 'skip': ['backward']}),
  868. ('ArgMaxWithValue', {
  869. 'block': P.ArgMaxWithValue(),
  870. 'desc_inputs': [[128, 32, 32, 64]],
  871. 'desc_bprop': [[1], [1]],
  872. 'skip': ['backward']}),
  873. ('ArgMinWithValue', {
  874. 'block': P.ArgMinWithValue(),
  875. 'desc_inputs': [[128, 32, 32, 64]],
  876. 'desc_bprop': [[1], [1]],
  877. 'skip': ['backward']}),
  878. ('Transpose_dim3', {
  879. 'block': P.Transpose(),
  880. 'desc_const': [(0, 2, 1)],
  881. 'desc_inputs': [[1, 2, 3]],
  882. 'desc_bprop': [[1, 3, 2]]}),
  883. ('Transpose_dim4', {
  884. 'block': P.Transpose(),
  885. 'desc_const': [(0, 1, 2, 3)],
  886. 'desc_inputs': [[1, 2, 3, 4]],
  887. 'desc_bprop': [[1, 2, 4, 3]]}),
  888. ('AddN', {
  889. 'block': NetForTupleInput(P.AddN()),
  890. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  891. 'desc_bprop': [[2, 3, 3, 5]],
  892. 'skip': ['backward']}),
  893. ('Shape', {
  894. 'block': P.Shape(),
  895. 'desc_inputs': [[3, 3, 2, 2]],
  896. 'skip': ['backward']}),
  897. ('Reshape', {
  898. 'block': P.Reshape(),
  899. 'desc_const': [(64,)],
  900. 'desc_inputs': [[64, 1]],
  901. 'desc_bprop': [[64]]}),
  902. ('Cast', {
  903. 'block': P.Cast(),
  904. 'desc_const': [mstype.int32],
  905. 'desc_inputs': [[2, 3, 4, 5]],
  906. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  907. ('ExpandDims', {
  908. 'block': P.ExpandDims(),
  909. 'desc_const': [0],
  910. 'desc_inputs': [[2, 2]],
  911. 'desc_bprop': [[1, 2, 2]]}),
  912. ('ExpandDims_1', {
  913. 'block': P.ExpandDims(),
  914. 'desc_const': [-1],
  915. 'desc_inputs': [[2, 2]],
  916. 'desc_bprop': [[2, 2, 1]]}),
  917. ('Squeeze', {
  918. 'block': P.Squeeze(2),
  919. 'desc_inputs': [[3, 2, 1]],
  920. 'desc_bprop': [[3, 2]]}),
  921. ('Squeeze_0', {
  922. 'block': P.Squeeze(),
  923. 'desc_inputs': [[3, 1, 2, 1]],
  924. 'desc_bprop': [[3, 2]]}),
  925. ('Squeeze_1', {
  926. 'block': P.Squeeze(),
  927. 'desc_inputs': [[1, 1, 1, 1]],
  928. 'desc_bprop': [1.0],
  929. 'skip': ['backward']}),
  930. ('Squeeze_2', {
  931. 'block': P.Squeeze((2, 3)),
  932. 'desc_inputs': [[3, 2, 1, 1]],
  933. 'desc_bprop': [[3, 2]]}),
  934. ('Size', {
  935. 'block': P.Size(),
  936. 'desc_inputs': [[2, 3, 5]],
  937. 'skip': ['backward']}),
  938. ('Tile_0', {
  939. 'block': P.Tile(),
  940. 'desc_const': [(1, 2)],
  941. 'desc_inputs': [[64, 1]],
  942. 'desc_bprop': [[64, 2]]}),
  943. ('Tile_1', {
  944. 'block': P.Tile(),
  945. 'desc_const': [(1, 1)],
  946. 'desc_inputs': [[64, 1]],
  947. 'desc_bprop': [[64, 1]]}),
  948. ('Tile_2', {
  949. 'block': P.Tile(),
  950. 'desc_const': [(2, 1, 1, 2)],
  951. 'desc_inputs': [[2, 2, 2]],
  952. 'desc_bprop': [[2, 2, 2, 4]]}),
  953. ('ConcatV2_0', {
  954. 'block': P.Concat(),
  955. 'desc_inputs': [
  956. (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
  957. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
  958. 'desc_bprop': [[4, 2]]}),
  959. ('ConcatV2_1', {
  960. 'block': P.Concat(axis=2),
  961. 'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
  962. Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
  963. 'desc_bprop': [[2, 1, 5]]}),
  964. ('ConcatV2_2', {
  965. 'block': NetForConcat(),
  966. 'desc_inputs': [[2, 2]],
  967. 'desc_bprop': [[4, 2]]}),
  968. ('ConcatV2_3', {
  969. 'block': NetForConcat1(),
  970. 'desc_inputs': [[2, 2], [2, 2]],
  971. 'desc_bprop': [[4, 2]]}),
  972. ('ConcatV2_4', {
  973. 'block': P.Concat(axis=0),
  974. 'desc_inputs': [
  975. (Tensor(np.ones((3, 2, 3), np.float32)),
  976. Tensor(np.ones((5, 2, 3), np.float32)),
  977. Tensor(np.ones((6, 2, 3), np.float32)))],
  978. 'desc_bprop': [[14, 2, 3]]}),
  979. ('ConcatV2_5', {
  980. 'block': P.Concat(axis=-1),
  981. 'desc_inputs': [(Tensor(np.array([1], np.float32)),
  982. Tensor(np.array([1], np.float32)),
  983. Tensor(np.array([1], np.float32)))],
  984. 'desc_bprop': [[3,]]}),
  985. ('Pack_0', {
  986. 'block': NetForPackInput(P.Pack()),
  987. 'desc_inputs':[[2, 2], [2, 2], [2, 2]],
  988. 'desc_bprop':[[3, 2, 2]],
  989. }),
  990. ('Pack_1', {
  991. 'block': NetForPackInput(P.Pack(axis=-2)),
  992. 'desc_inputs':[[3, 2, 3], [3, 2, 3], [3, 2, 3]],
  993. 'desc_bprop':[[3, 2, 3, 3]],
  994. }),
  995. ('Pack_2', {
  996. 'block': NetForPackInput(P.Pack()),
  997. 'desc_inputs':[[2, 2]],
  998. 'desc_bprop':[[2, 2, 2]],
  999. }),
  1000. ('Pack_3', {
  1001. 'block': NetForPackInput(P.Pack()),
  1002. 'desc_inputs':[[128, 128], [128, 128]],
  1003. 'desc_bprop':[[2, 128, 128]],
  1004. }),
  1005. ('Unpack_0', {
  1006. 'block': NetForUnpackInput(P.Unpack(axis=0)),
  1007. 'desc_inputs':[[2, 4]],
  1008. 'desc_bprop':[[4], [4]],
  1009. }),
  1010. ('Unpack_1', {
  1011. 'block': NetForUnpackInput(P.Unpack(axis=-1)),
  1012. 'desc_inputs':[Tensor(np.array([[1, 1, 1]], np.float32))],
  1013. 'desc_bprop':[[1], [1], [1]],
  1014. }),
  1015. ('Diag', {
  1016. 'block': P.Diag(),
  1017. 'desc_inputs': [[4]],
  1018. 'desc_bprop': [[4, 4]],
  1019. }),
  1020. ('DiagPart', {
  1021. 'block': P.DiagPart(),
  1022. 'desc_inputs': [[4, 4]],
  1023. 'desc_bprop': [[4]],
  1024. }),
  1025. ('SpaceToBatch_1', {
  1026. 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
  1027. 'desc_inputs': [[1, 3, 2, 2]],
  1028. 'desc_bprop': [[4, 3, 1, 1]],
  1029. }),
  1030. ('SpaceToBatch_2', {
  1031. 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
  1032. 'desc_inputs': [[1, 3, 2, 2]],
  1033. 'desc_bprop': [[4, 3, 2, 4]],
  1034. }),
  1035. ('BatchToSpace_1', {
  1036. 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
  1037. 'desc_inputs': [[4, 3, 1, 1]],
  1038. 'desc_bprop': [[1, 3, 2, 2]],
  1039. }),
  1040. ('BatchToSpace_2', {
  1041. 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
  1042. 'desc_inputs': [[4, 3, 1, 1]],
  1043. 'desc_bprop': [[1, 3, 2, 1]],
  1044. }),
  1045. ]
  1046. test_case_other_ops = [
  1047. ('ScalarLog', {
  1048. 'block': F.scalar_log,
  1049. 'desc_const': [0.0],
  1050. 'desc_inputs': [],
  1051. 'desc_bprop': [1],
  1052. 'skip': ['backward']}),
  1053. ('BoundingBoxEncode', {
  1054. 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
  1055. 'desc_inputs': [[256, 4], [256, 4]],
  1056. 'desc_bprop': [[256, 4]],
  1057. 'skip': ['backward']}),
  1058. ('BoundingBoxDecode', {
  1059. 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
  1060. 'desc_inputs': [[256, 4], [256, 4]],
  1061. 'desc_bprop': [[256, 4]],
  1062. 'skip': ['backward']}),
  1063. ('GatherNd', {
  1064. 'block': P.GatherNd(),
  1065. 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
  1066. Tensor(np.ones((2, 4), np.int32))),
  1067. 'desc_bprop': [[2]]}),
  1068. ('ScatterNdUpdate', {
  1069. 'block': P.ScatterNdUpdate(),
  1070. 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
  1071. Tensor(np.ones((2, 2), np.int32)),
  1072. Tensor(np.ones((2,), np.float32))),
  1073. 'desc_bprop': [[2, 3]]}),
  1074. ('ScatterNd', {
  1075. 'block': P.ScatterNd(),
  1076. 'desc_const': [(3, 3)],
  1077. 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
  1078. Tensor(np.ones((2,), np.int32))),
  1079. 'desc_bprop': [[3, 3]]}),
  1080. ('SmoothL1Loss', {
  1081. 'block': P.SmoothL1Loss(),
  1082. 'desc_inputs': [[256, 4], [256, 4]],
  1083. 'desc_bprop': [[256, 4]]}),
  1084. ('IOU', {
  1085. 'block': P.IOU(),
  1086. 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
  1087. 'desc_bprop': [[128, 256]]}),
  1088. ('Summary', {
  1089. 'block': SummaryNet(),
  1090. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1091. Tensor(np.array([1.2]).astype(np.float32))],
  1092. 'skip': ['backward']}),
  1093. ('ConfusionMulGrad_1', {
  1094. 'block': P.ConfusionMulGrad(axis = [0], keep_dims = False),
  1095. 'desc_inputs': [[3, 2], [3, 2], [3, 2]],
  1096. 'desc_bprop': [[3, 2], [2]],
  1097. 'skip': ['backward']}),
  1098. ('ConfusionMulGrad_2', {
  1099. 'block': P.ConfusionMulGrad(axis = [0], keep_dims = True),
  1100. 'desc_inputs': [[3, 2], [3, 2], [3, 2]],
  1101. 'desc_bprop': [[3, 2], [1, 2]],
  1102. 'skip': ['backward']}),
  1103. ('ConfusionMulGrad_3', {
  1104. 'block': P.ConfusionMulGrad(axis = (), keep_dims = True),
  1105. 'desc_inputs': [[2, 3, 4], [2, 3, 4], [2, 3, 4]],
  1106. 'desc_bprop': [[2, 3, 4], [1, 1, 1]],
  1107. 'skip': ['backward']}),
  1108. ('HistogramSummary', {
  1109. 'block': HistogramSummaryNet(),
  1110. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1111. Tensor(np.array([1.2]).astype(np.float32))],
  1112. 'skip': ['backward']}),
  1113. ]
  1114. test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
  1115. test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  1116. # use -k to select certain testcast
  1117. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  1118. test_exec_case = test_case
  1119. test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
  1120. 'backward' not in x[1]['skip'], test_case)
  1121. import mindspore.context as context
  1122. @non_graph_engine
  1123. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  1124. def test_exec():
  1125. context.set_context(mode=context.GRAPH_MODE)
  1126. return test_exec_case
  1127. @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
  1128. def test_backward_exec():
  1129. context.set_context(mode=context.GRAPH_MODE)
  1130. return test_backward_exec_case
  1131. raise_set = [
  1132. ('Cast_Error', {
  1133. 'block': (P.Cast(), {'exception': TypeError}),
  1134. 'desc_const': [mstype.int32],
  1135. 'desc_inputs': ['wrong input'],
  1136. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  1137. ('Maximum_Error', {
  1138. 'block': (P.Maximum(), {'exception': TypeError}),
  1139. 'desc_const': [(1, 2, 3)],
  1140. 'desc_inputs': [[2, 3, 3, 5]],
  1141. 'desc_bprop': [[2, 3, 3, 5]]}),
  1142. ('Shape_error', {
  1143. 'block': (P.Shape(), {'exception': TypeError}),
  1144. 'desc_inputs': [(64, 1)],
  1145. 'desc_bprop': [[64]]}),
  1146. ('Flatten_Error', {
  1147. 'block': (NetForFlatten0D(), {'exception': ValueError}),
  1148. 'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
  1149. 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
  1150. ]
  1151. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  1152. def test_check_exception():
  1153. return raise_set