|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- # AlexNet Example
-
- ## Description
-
- Training AlexNet with CIFAR-10 dataset in MindSpore.
-
- This is the simple tutorial for training AlexNet in MindSpore.
-
- ## Requirements
-
- - Install [MindSpore](https://www.mindspore.cn/install/en).
-
- - Download the CIFAR-10 dataset at <http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz>. The directory structure is as follows:
-
- ```
- ├─cifar-10-batches-bin
- │
- └─cifar-10-verify-bin
- ```
-
- ## Running the example
-
- ```python
- # train AlexNet, hyperparameter setting in config.py
- python train.py --data_path cifar-10-batches-bin
- ```
-
- You can get loss with each step similar to this:
-
- ```bash
- epoch: 1 step: 1, loss is 2.2791853
- ...
- epoch: 1 step: 1536, loss is 1.9366643
- epoch: 1 step: 1537, loss is 1.6983616
- epoch: 1 step: 1538, loss is 1.0221305
- ...
- ```
-
- Then, test AlexNet according to network model
- ```python
- # test AlexNet, 1 epoch training accuracy is up to 51.1%; 10 epoch training accuracy is up to 81.2%
- python eval.py --data_path cifar-10-verify-bin --mode test --ckpt_path checkpoint_alexnet-1_1562.ckpt
- ```
-
- ## Note
- There are some optional arguments:
-
- ```bash
- -h, --help show this help message and exit
- --device_target {Ascend,GPU}
- device where the code will be implemented (default: Ascend)
- --data_path DATA_PATH
- path where the dataset is saved
- --dataset_sink_mode DATASET_SINK_MODE
- dataset_sink_mode is False or True
- ```
-
- You can run ```python train.py -h``` or ```python eval.py -h``` to get more information.
|