|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test cases for Gumbel distribution"""
- import numpy as np
- from scipy import stats
- from scipy import special
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore.nn.probability.distribution as msd
- from mindspore import Tensor
- from mindspore import dtype
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
- class Prob(nn.Cell):
- """
- Test class: probability of Gumbel distribution.
- """
- def __init__(self):
- super(Prob, self).__init__()
- self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.gum.prob(x_)
-
- def test_pdf():
- """
- Test pdf.
- """
- loc = np.array([0.0]).astype(np.float32)
- scale = np.array([[1.0], [2.0]]).astype(np.float32)
- gumbel_benchmark = stats.gumbel_r(loc, scale)
- value = np.array([1.0, 2.0]).astype(np.float32)
- expect_pdf = gumbel_benchmark.pdf(value).astype(np.float32)
- pdf = Prob()
- output = pdf(Tensor(value, dtype=dtype.float32))
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
-
- class LogProb(nn.Cell):
- """
- Test class: log probability of Gumbel distribution.
- """
- def __init__(self):
- super(LogProb, self).__init__()
- self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.gum.log_prob(x_)
-
- def test_log_likelihood():
- """
- Test log_pdf.
- """
- loc = np.array([0.0]).astype(np.float32)
- scale = np.array([[1.0], [2.0]]).astype(np.float32)
- gumbel_benchmark = stats.gumbel_r(loc, scale)
- expect_logpdf = gumbel_benchmark.logpdf([1.0, 2.0]).astype(np.float32)
- logprob = LogProb()
- output = logprob(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
-
- class KL(nn.Cell):
- """
- Test class: kl_loss of Gumbel distribution.
- """
- def __init__(self):
- super(KL, self).__init__()
- self.gum = msd.Gumbel(np.array([0.0]), np.array([1.0, 2.0]), dtype=dtype.float32)
-
- def construct(self, loc_b, scale_b):
- return self.gum.kl_loss('Gumbel', loc_b, scale_b)
-
- def test_kl_loss():
- """
- Test kl_loss.
- """
- loc = np.array([0.0]).astype(np.float32)
- scale = np.array([1.0, 2.0]).astype(np.float32)
-
- loc_b = np.array([1.0]).astype(np.float32)
- scale_b = np.array([1.0, 2.0]).astype(np.float32)
-
- expect_kl_loss = np.log(scale_b) - np.log(scale) +\
- np.euler_gamma * (scale / scale_b - 1.) +\
- np.expm1((loc_b - loc) / scale_b + special.loggamma(scale / scale_b + 1.))
-
- kl_loss = KL()
- loc_b = Tensor(loc_b, dtype=dtype.float32)
- scale_b = Tensor(scale_b, dtype=dtype.float32)
- output = kl_loss(loc_b, scale_b)
- tol = 1e-5
- assert (np.abs(output.asnumpy() - expect_kl_loss) < tol).all()
-
- class Basics(nn.Cell):
- """
- Test class: mean/sd/mode of Gumbel distribution.
- """
- def __init__(self):
- super(Basics, self).__init__()
- self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
-
- def construct(self):
- return self.gum.mean(), self.gum.sd(), self.gum.mode()
-
- def test_basics():
- """
- Test mean/standard deviation/mode.
- """
- basics = Basics()
- mean, sd, mode = basics()
-
- loc = np.array([0.0]).astype(np.float32)
- scale = np.array([[1.0], [2.0]]).astype(np.float32)
- gumbel_benchmark = stats.gumbel_r(loc, scale)
- expect_mean = gumbel_benchmark.mean().astype(np.float32)
- expect_sd = gumbel_benchmark.std().astype(np.float32)
- expect_mode = np.array([[0.0], [0.0]]).astype(np.float32)
- tol = 1e-6
- assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
- assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
- assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
-
- class Sampling(nn.Cell):
- """
- Test class: sample of Gumbel distribution.
- """
- def __init__(self, shape, seed=0):
- super(Sampling, self).__init__()
- self.gum = msd.Gumbel(np.array([0.0]), np.array([1.0, 2.0, 3.0]), dtype=dtype.float32, seed=seed)
- self.shape = shape
-
- def construct(self):
- return self.gum.sample(self.shape)
-
- def test_sample():
- """
- Test sample.
- """
- shape = (2, 3)
- seed = 10
- sample = Sampling(shape, seed=seed)
- output = sample()
- assert output.shape == (2, 3, 3)
-
- class CDF(nn.Cell):
- """
- Test class: cdf of Gumbel distribution.
- """
- def __init__(self):
- super(CDF, self).__init__()
- self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.gum.cdf(x_)
-
- def test_cdf():
- """
- Test cdf.
- """
- loc = np.array([0.0]).astype(np.float32)
- scale = np.array([[1.0], [2.0]]).astype(np.float32)
- gumbel_benchmark = stats.gumbel_r(loc, scale)
- expect_cdf = gumbel_benchmark.cdf([1.0, 2.0]).astype(np.float32)
- cdf = CDF()
- output = cdf(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 2e-5
- assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
-
- class LogCDF(nn.Cell):
- """
- Test class: log_cdf of Gumbel distribution.
- """
- def __init__(self):
- super(LogCDF, self).__init__()
- self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.gum.log_cdf(x_)
-
- def test_log_cdf():
- """
- Test log cdf.
- """
- loc = np.array([0.0]).astype(np.float32)
- scale = np.array([[1.0], [2.0]]).astype(np.float32)
- gumbel_benchmark = stats.gumbel_r(loc, scale)
- expect_logcdf = gumbel_benchmark.logcdf([1.0, 2.0]).astype(np.float32)
- logcdf = LogCDF()
- output = logcdf(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 1e-4
- assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
-
- class SF(nn.Cell):
- """
- Test class: survival function of Gumbel distribution.
- """
- def __init__(self):
- super(SF, self).__init__()
- self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.gum.survival_function(x_)
-
- def test_survival():
- """
- Test log_survival.
- """
- loc = np.array([0.0]).astype(np.float32)
- scale = np.array([[1.0], [2.0]]).astype(np.float32)
- gumbel_benchmark = stats.gumbel_r(loc, scale)
- expect_survival = gumbel_benchmark.sf([1.0, 2.0]).astype(np.float32)
- survival_function = SF()
- output = survival_function(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 2e-5
- assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
-
- class LogSF(nn.Cell):
- """
- Test class: log survival function of Gumbel distribution.
- """
- def __init__(self):
- super(LogSF, self).__init__()
- self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.gum.log_survival(x_)
-
- def test_log_survival():
- """
- Test log_survival.
- """
- loc = np.array([0.0]).astype(np.float32)
- scale = np.array([[1.0], [2.0]]).astype(np.float32)
- gumbel_benchmark = stats.gumbel_r(loc, scale)
- expect_log_survival = gumbel_benchmark.logsf([1.0, 2.0]).astype(np.float32)
- log_survival = LogSF()
- output = log_survival(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 5e-4
- assert (np.abs(output.asnumpy() - expect_log_survival) < tol).all()
-
- class EntropyH(nn.Cell):
- """
- Test class: entropy of Gumbel distribution.
- """
- def __init__(self):
- super(EntropyH, self).__init__()
- self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
-
- def construct(self):
- return self.gum.entropy()
-
- def test_entropy():
- """
- Test entropy.
- """
- loc = np.array([0.0]).astype(np.float32)
- scale = np.array([[1.0], [2.0]]).astype(np.float32)
- gumbel_benchmark = stats.gumbel_r(loc, scale)
- expect_entropy = gumbel_benchmark.entropy().astype(np.float32)
- entropy = EntropyH()
- output = entropy()
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_entropy) < tol).all()
-
- class CrossEntropy(nn.Cell):
- """
- Test class: cross entropy between Gumbel distributions.
- """
- def __init__(self):
- super(CrossEntropy, self).__init__()
- self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
-
- def construct(self, x_, y_):
- entropy = self.gum.entropy()
- kl_loss = self.gum.kl_loss('Gumbel', x_, y_)
- h_sum_kl = entropy + kl_loss
- cross_entropy = self.gum.cross_entropy('Gumbel', x_, y_)
- return h_sum_kl - cross_entropy
-
- def test_cross_entropy():
- """
- Test cross_entropy.
- """
- cross_entropy = CrossEntropy()
- loc = Tensor([1.0], dtype=dtype.float32)
- scale = Tensor([1.0], dtype=dtype.float32)
- diff = cross_entropy(loc, scale)
- tol = 1e-6
- assert (np.abs(diff.asnumpy() - np.zeros(diff.shape)) < tol).all()
|