You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_ner.py 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. '''
  16. Bert finetune and evaluation script.
  17. '''
  18. import os
  19. import json
  20. import argparse
  21. from src.bert_for_finetune import BertFinetuneCell, BertNER
  22. from src.finetune_eval_config import optimizer_cfg, bert_net_cfg
  23. from src.dataset import create_ner_dataset
  24. from src.utils import make_directory, LossCallBack, LoadNewestCkpt
  25. from src.assessment_method import Accuracy, F1, MCC, Spearman_Correlation
  26. import mindspore.common.dtype as mstype
  27. from mindspore import context
  28. from mindspore import log as logger
  29. from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
  30. from mindspore.nn.optim import AdamWeightDecayDynamicLR, Lamb, Momentum
  31. from mindspore.common.tensor import Tensor
  32. from mindspore.train.model import Model
  33. from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
  34. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  35. _cur_dir = os.getcwd()
  36. def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoint_path=""):
  37. """ do train """
  38. if load_checkpoint_path == "":
  39. raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
  40. steps_per_epoch = dataset.get_dataset_size()
  41. epoch_num = dataset.get_repeat_count()
  42. # optimizer
  43. if optimizer_cfg.optimizer == 'AdamWeightDecayDynamicLR':
  44. optimizer = AdamWeightDecayDynamicLR(network.trainable_params(),
  45. decay_steps=steps_per_epoch * epoch_num,
  46. learning_rate=optimizer_cfg.AdamWeightDecayDynamicLR.learning_rate,
  47. end_learning_rate=optimizer_cfg.AdamWeightDecayDynamicLR.end_learning_rate,
  48. power=optimizer_cfg.AdamWeightDecayDynamicLR.power,
  49. warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
  50. weight_decay=optimizer_cfg.AdamWeightDecayDynamicLR.weight_decay,
  51. eps=optimizer_cfg.AdamWeightDecayDynamicLR.eps)
  52. elif optimizer_cfg.optimizer == 'Lamb':
  53. optimizer = Lamb(network.trainable_params(), decay_steps=steps_per_epoch * epoch_num,
  54. start_learning_rate=optimizer_cfg.Lamb.start_learning_rate,
  55. end_learning_rate=optimizer_cfg.Lamb.end_learning_rate,
  56. power=optimizer_cfg.Lamb.power, weight_decay=optimizer_cfg.Lamb.weight_decay,
  57. warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
  58. decay_filter=optimizer_cfg.Lamb.decay_filter)
  59. elif optimizer_cfg.optimizer == 'Momentum':
  60. optimizer = Momentum(network.trainable_params(), learning_rate=optimizer_cfg.Momentum.learning_rate,
  61. momentum=optimizer_cfg.Momentum.momentum)
  62. else:
  63. raise Exception("Optimizer not supported. support: [AdamWeightDecayDynamicLR, Lamb, Momentum]")
  64. # load checkpoint into network
  65. ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1)
  66. ckpoint_cb = ModelCheckpoint(prefix="ner", directory=save_checkpoint_path, config=ckpt_config)
  67. param_dict = load_checkpoint(load_checkpoint_path)
  68. load_param_into_net(network, param_dict)
  69. update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32, scale_factor=2, scale_window=1000)
  70. netwithgrads = BertFinetuneCell(network, optimizer=optimizer, scale_update_cell=update_cell)
  71. model = Model(netwithgrads)
  72. callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(), ckpoint_cb]
  73. model.train(epoch_num, dataset, callbacks=callbacks)
  74. def eval_result_print(assessment_method="accuracy", callback=None):
  75. """print eval result"""
  76. if assessment_method == "accuracy":
  77. print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num,
  78. callback.acc_num / callback.total_num))
  79. elif assessment_method == "f1":
  80. print("Precision {:.6f} ".format(callback.TP / (callback.TP + callback.FP)))
  81. print("Recall {:.6f} ".format(callback.TP / (callback.TP + callback.FN)))
  82. print("F1 {:.6f} ".format(2 * callback.TP / (2 * callback.TP + callback.FP + callback.FN)))
  83. elif assessment_method == "mcc":
  84. print("MCC {:.6f} ".format(callback.cal()))
  85. elif assessment_method == "spearman_correlation":
  86. print("Spearman Correlation is {:.6f} ".format(callback.cal()[0]))
  87. else:
  88. raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]")
  89. def do_eval(dataset=None, network=None, use_crf="", num_class=2, assessment_method="accuracy", data_file="",
  90. load_checkpoint_path="", vocab_file="", label2id_file="", tag_to_index=None):
  91. """ do eval """
  92. if load_checkpoint_path == "":
  93. raise ValueError("Finetune model missed, evaluation task must load finetune model!")
  94. if assessment_method == "clue_benchmark":
  95. bert_net_cfg.batch_size = 1
  96. net_for_pretraining = network(bert_net_cfg, False, num_class, use_crf=(use_crf.lower() == "true"),
  97. tag_to_index=tag_to_index)
  98. net_for_pretraining.set_train(False)
  99. param_dict = load_checkpoint(load_checkpoint_path)
  100. load_param_into_net(net_for_pretraining, param_dict)
  101. model = Model(net_for_pretraining)
  102. if assessment_method == "clue_benchmark":
  103. from src.cluener_evaluation import submit
  104. submit(model=model, path=data_file, vocab_file=vocab_file, use_crf=use_crf, label2id_file=label2id_file)
  105. else:
  106. if assessment_method == "accuracy":
  107. callback = Accuracy()
  108. elif assessment_method == "f1":
  109. callback = F1((use_crf.lower() == "true"), num_class)
  110. elif assessment_method == "mcc":
  111. callback = MCC()
  112. elif assessment_method == "spearman_correlation":
  113. callback = Spearman_Correlation()
  114. else:
  115. raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]")
  116. columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
  117. for data in dataset.create_dict_iterator():
  118. input_data = []
  119. for i in columns_list:
  120. input_data.append(Tensor(data[i]))
  121. input_ids, input_mask, token_type_id, label_ids = input_data
  122. logits = model.predict(input_ids, input_mask, token_type_id, label_ids)
  123. callback.update(logits, label_ids)
  124. print("==============================================================")
  125. eval_result_print(assessment_method, callback)
  126. print("==============================================================")
  127. def run_ner():
  128. """run ner task"""
  129. parser = argparse.ArgumentParser(description="run classifier")
  130. parser.add_argument("--device_target", type=str, default="Ascend", help="Device type, default is Ascend")
  131. parser.add_argument("--assessment_method", type=str, default="accuracy", help="assessment_method include: "
  132. "[F1, clue_benchmark], default is F1")
  133. parser.add_argument("--do_train", type=str, default="false", help="Eable train, default is false")
  134. parser.add_argument("--do_eval", type=str, default="false", help="Eable eval, default is false")
  135. parser.add_argument("--use_crf", type=str, default="false", help="Use crf, default is false")
  136. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  137. parser.add_argument("--epoch_num", type=int, default="1", help="Epoch number, default is 1.")
  138. parser.add_argument("--num_class", type=int, default="2", help="The number of class, default is 2.")
  139. parser.add_argument("--vocab_file_path", type=str, default="", help="Vocab file path, used in clue benchmark")
  140. parser.add_argument("--label2id_file_path", type=str, default="", help="label2id file path, used in clue benchmark")
  141. parser.add_argument("--save_finetune_checkpoint_path", type=str, default="", help="Save checkpoint path")
  142. parser.add_argument("--load_pretrain_checkpoint_path", type=str, default="", help="Load checkpoint file path")
  143. parser.add_argument("--load_finetune_checkpoint_path", type=str, default="", help="Load checkpoint file path")
  144. parser.add_argument("--train_data_file_path", type=str, default="",
  145. help="Data path, it is better to use absolute path")
  146. parser.add_argument("--eval_data_file_path", type=str, default="",
  147. help="Data path, it is better to use absolute path")
  148. parser.add_argument("--schema_file_path", type=str, default="",
  149. help="Schema path, it is better to use absolute path")
  150. args_opt = parser.parse_args()
  151. epoch_num = args_opt.epoch_num
  152. assessment_method = args_opt.assessment_method.lower()
  153. load_pretrain_checkpoint_path = args_opt.load_pretrain_checkpoint_path
  154. save_finetune_checkpoint_path = args_opt.save_finetune_checkpoint_path
  155. load_finetune_checkpoint_path = args_opt.load_finetune_checkpoint_path
  156. if args_opt.do_train.lower() == "false" and args_opt.do_eval.lower() == "false":
  157. raise ValueError("At least one of 'do_train' or 'do_eval' must be true")
  158. if args_opt.do_train.lower() == "true" and args_opt.train_data_file_path == "":
  159. raise ValueError("'train_data_file_path' must be set when do finetune task")
  160. if args_opt.do_eval.lower() == "true" and args_opt.eval_data_file_path == "":
  161. raise ValueError("'eval_data_file_path' must be set when do evaluation task")
  162. if args_opt.assessment_method.lower() == "clue_benchmark" and args_opt.vocab_file_path == "":
  163. raise ValueError("'vocab_file_path' must be set to do clue benchmark")
  164. if args_opt.use_crf.lower() == "true" and args_opt.label2id_file_path == "":
  165. raise ValueError("'label2id_file_path' must be set to use crf")
  166. if args_opt.assessment_method.lower() == "clue_benchmark" and args_opt.label2id_file_path == "":
  167. raise ValueError("'label2id_file_path' must be set to do clue benchmark")
  168. target = args_opt.device_target
  169. if target == "Ascend":
  170. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
  171. elif target == "GPU":
  172. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  173. if bert_net_cfg.compute_type != mstype.float32:
  174. logger.warning('GPU only support fp32 temporarily, run with fp32.')
  175. bert_net_cfg.compute_type = mstype.float32
  176. else:
  177. raise Exception("Target error, GPU or Ascend is supported.")
  178. tag_to_index = None
  179. if args_opt.use_crf.lower() == "true":
  180. with open(args_opt.label2id_file_path) as json_file:
  181. tag_to_index = json.load(json_file)
  182. max_val = max(tag_to_index.values())
  183. tag_to_index["<START>"] = max_val + 1
  184. tag_to_index["<STOP>"] = max_val + 2
  185. number_labels = len(tag_to_index)
  186. else:
  187. number_labels = args_opt.num_class
  188. netwithloss = BertNER(bert_net_cfg, True, num_labels=number_labels,
  189. use_crf=(args_opt.use_crf.lower() == "true"),
  190. tag_to_index=tag_to_index, dropout_prob=0.1)
  191. if args_opt.do_train.lower() == "true":
  192. ds = create_ner_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=epoch_num,
  193. assessment_method=assessment_method, data_file_path=args_opt.train_data_file_path,
  194. schema_file_path=args_opt.schema_file_path)
  195. do_train(ds, netwithloss, load_pretrain_checkpoint_path, save_finetune_checkpoint_path)
  196. if args_opt.do_eval.lower() == "true":
  197. if save_finetune_checkpoint_path == "":
  198. load_finetune_checkpoint_dir = _cur_dir
  199. else:
  200. load_finetune_checkpoint_dir = make_directory(save_finetune_checkpoint_path)
  201. load_finetune_checkpoint_path = LoadNewestCkpt(load_finetune_checkpoint_dir,
  202. ds.get_dataset_size(), epoch_num, "ner")
  203. if args_opt.do_eval.lower() == "true":
  204. ds = create_ner_dataset(batch_size=bert_net_cfg.batch_size, repeat_count=epoch_num,
  205. assessment_method=assessment_method, data_file_path=args_opt.eval_data_file_path,
  206. schema_file_path=args_opt.schema_file_path)
  207. do_eval(ds, BertNER, args_opt.use_crf, number_labels, assessment_method, args_opt.eval_data_file_path,
  208. load_finetune_checkpoint_path, args_opt.vocab_file_path, args_opt.label2id_file_path, tag_to_index)
  209. if __name__ == "__main__":
  210. run_ner()