You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 9.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Train mobilenetV2 on ImageNet"""
  16. import os
  17. import argparse
  18. import random
  19. import numpy as np
  20. from mindspore import context
  21. from mindspore import Tensor
  22. from mindspore import nn
  23. from mindspore.train.model import Model, ParallelMode
  24. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  25. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
  26. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  27. from mindspore.communication.management import init, get_group_size, get_rank
  28. from mindspore.train.quant import quant
  29. import mindspore.dataset.engine as de
  30. from src.dataset import create_dataset
  31. from src.lr_generator import get_lr
  32. from src.utils import Monitor, CrossEntropyWithLabelSmooth
  33. from src.config import config_ascend_quant, config_ascend, config_gpu_quant, config_gpu
  34. from src.mobilenetV2 import mobilenetV2
  35. random.seed(1)
  36. np.random.seed(1)
  37. de.config.set_seed(1)
  38. parser = argparse.ArgumentParser(description='Image classification')
  39. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  40. parser.add_argument('--pre_trained', type=str, default=None, help='Pertained checkpoint path')
  41. parser.add_argument('--device_target', type=str, default=None, help='Run device target')
  42. parser.add_argument('--quantization_aware', type=bool, default=False, help='Use quantization aware training')
  43. args_opt = parser.parse_args()
  44. if args_opt.device_target == "Ascend":
  45. device_id = int(os.getenv('DEVICE_ID'))
  46. rank_id = int(os.getenv('RANK_ID'))
  47. rank_size = int(os.getenv('RANK_SIZE'))
  48. run_distribute = rank_size > 1
  49. device_id = int(os.getenv('DEVICE_ID'))
  50. context.set_context(mode=context.GRAPH_MODE,
  51. device_target="Ascend",
  52. device_id=device_id, save_graphs=False)
  53. elif args_opt.device_target == "GPU":
  54. init("nccl")
  55. context.set_auto_parallel_context(device_num=get_group_size(),
  56. parallel_mode=ParallelMode.DATA_PARALLEL,
  57. mirror_mean=True)
  58. context.set_context(mode=context.GRAPH_MODE,
  59. device_target="GPU",
  60. save_graphs=False)
  61. else:
  62. raise ValueError("Unsupported device target.")
  63. def train_on_ascend():
  64. config = config_ascend_quant if args_opt.quantization_aware else config_ascend
  65. print("training args: {}".format(args_opt))
  66. print("training configure: {}".format(config))
  67. print("parallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
  68. epoch_size = config.epoch_size
  69. # distribute init
  70. if run_distribute:
  71. context.set_auto_parallel_context(device_num=rank_size,
  72. parallel_mode=ParallelMode.DATA_PARALLEL,
  73. parameter_broadcast=True,
  74. mirror_mean=True)
  75. init()
  76. # define network
  77. network = mobilenetV2(num_classes=config.num_classes)
  78. # define loss
  79. if config.label_smooth > 0:
  80. loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth, num_classes=config.num_classes)
  81. else:
  82. loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
  83. # define dataset
  84. dataset = create_dataset(dataset_path=args_opt.dataset_path,
  85. do_train=True,
  86. config=config,
  87. device_target=args_opt.device_target,
  88. repeat_num=1,
  89. batch_size=config.batch_size)
  90. step_size = dataset.get_dataset_size()
  91. # load pre trained ckpt
  92. if args_opt.pre_trained:
  93. param_dict = load_checkpoint(args_opt.pre_trained)
  94. load_param_into_net(network, param_dict)
  95. # convert fusion network to quantization aware network
  96. if config.quantization_aware:
  97. network = quant.convert_quant_network(network,
  98. bn_fold=True,
  99. per_channel=[True, False],
  100. symmetric=[True, False])
  101. # get learning rate
  102. lr = Tensor(get_lr(global_step=config.start_epoch * step_size,
  103. lr_init=0,
  104. lr_end=0,
  105. lr_max=config.lr,
  106. warmup_epochs=config.warmup_epochs,
  107. total_epochs=epoch_size + config.start_epoch,
  108. steps_per_epoch=step_size))
  109. # define optimization
  110. opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), lr, config.momentum,
  111. config.weight_decay)
  112. # define model
  113. model = Model(network, loss_fn=loss, optimizer=opt)
  114. print("============== Starting Training ==============")
  115. callback = None
  116. if rank_id == 0:
  117. callback = [Monitor(lr_init=lr.asnumpy())]
  118. if config.save_checkpoint:
  119. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  120. keep_checkpoint_max=config.keep_checkpoint_max)
  121. ckpt_cb = ModelCheckpoint(prefix="mobilenetV2",
  122. directory=config.save_checkpoint_path,
  123. config=config_ck)
  124. callback += [ckpt_cb]
  125. model.train(epoch_size, dataset, callbacks=callback)
  126. print("============== End Training ==============")
  127. def train_on_gpu():
  128. config = config_gpu_quant if args_opt.quantization_aware else config_gpu
  129. print("training args: {}".format(args_opt))
  130. print("training configure: {}".format(config))
  131. # define network
  132. network = mobilenetV2(num_classes=config.num_classes)
  133. # define loss
  134. if config.label_smooth > 0:
  135. loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth,
  136. num_classes=config.num_classes)
  137. else:
  138. loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
  139. # define dataset
  140. epoch_size = config.epoch_size
  141. dataset = create_dataset(dataset_path=args_opt.dataset_path,
  142. do_train=True,
  143. config=config,
  144. device_target=args_opt.device_target,
  145. repeat_num=1,
  146. batch_size=config.batch_size)
  147. step_size = dataset.get_dataset_size()
  148. # resume
  149. if args_opt.pre_trained:
  150. param_dict = load_checkpoint(args_opt.pre_trained)
  151. load_param_into_net(network, param_dict)
  152. # convert fusion network to quantization aware network
  153. if config.quantization_aware:
  154. network = quant.convert_quant_network(network,
  155. bn_fold=True,
  156. per_channel=[True, False],
  157. symmetric=[True, True])
  158. # get learning rate
  159. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  160. lr = Tensor(get_lr(global_step=config.start_epoch * step_size,
  161. lr_init=0,
  162. lr_end=0,
  163. lr_max=config.lr,
  164. warmup_epochs=config.warmup_epochs,
  165. total_epochs=epoch_size + config.start_epoch,
  166. steps_per_epoch=step_size))
  167. # define optimization
  168. opt = nn.Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), lr, config.momentum,
  169. config.weight_decay, config.loss_scale)
  170. # define model
  171. model = Model(network, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale)
  172. print("============== Starting Training ==============")
  173. callback = [Monitor(lr_init=lr.asnumpy())]
  174. ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
  175. if config.save_checkpoint:
  176. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  177. keep_checkpoint_max=config.keep_checkpoint_max)
  178. ckpt_cb = ModelCheckpoint(prefix="mobilenetV2", directory=ckpt_save_dir, config=config_ck)
  179. callback += [ckpt_cb]
  180. model.train(epoch_size, dataset, callbacks=callback)
  181. print("============== End Training ==============")
  182. if __name__ == '__main__':
  183. if args_opt.device_target == "Ascend":
  184. train_on_ascend()
  185. elif args_opt.device_target == "GPU":
  186. train_on_gpu()
  187. else:
  188. raise ValueError("Unsupported device target.")