|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test cases for Cauchy distribution"""
- import numpy as np
- from scipy import stats
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore.nn.probability.distribution as msd
- from mindspore import Tensor
- from mindspore import dtype
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
- class Prob(nn.Cell):
- """
- Test class: probability of Cauchy distribution.
- """
- def __init__(self):
- super(Prob, self).__init__()
- self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.c.prob(x_)
-
- def test_pdf():
- """
- Test pdf.
- """
- cauchy_benchmark = stats.cauchy(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_pdf = cauchy_benchmark.pdf([1.0, 2.0]).astype(np.float32)
- pdf = Prob()
- output = pdf(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
-
- class LogProb(nn.Cell):
- """
- Test class: log probability of Cauchy distribution.
- """
- def __init__(self):
- super(LogProb, self).__init__()
- self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.c.log_prob(x_)
-
- def test_log_likelihood():
- """
- Test log_pdf.
- """
- cauchy_benchmark = stats.cauchy(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_logpdf = cauchy_benchmark.logpdf([1.0, 2.0]).astype(np.float32)
- logprob = LogProb()
- output = logprob(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
-
- class KL(nn.Cell):
- """
- Test class: kl_loss of Cauchy distribution.
- """
- def __init__(self):
- super(KL, self).__init__()
- self.c = msd.Cauchy(np.array([3.]), np.array([4.]), dtype=dtype.float32)
-
- def construct(self, mu, s):
- return self.c.kl_loss('Cauchy', mu, s)
-
- def test_kl_loss():
- """
- Test kl_loss.
- """
- loc_b = np.array([0.]).astype(np.float32)
- scale_b = np.array([1.]).astype(np.float32)
-
- loc_a = np.array([3.0]).astype(np.float32)
- scale_a = np.array([4.0]).astype(np.float32)
-
- sum_square = np.square(scale_a + scale_b)
- square_diff = np.square(loc_a - loc_b)
- expect_kl_loss = np.log(sum_square + square_diff) - \
- np.log(4.0 * scale_a * scale_b)
-
- kl_loss = KL()
- loc = Tensor(loc_b, dtype=dtype.float32)
- scale = Tensor(scale_b, dtype=dtype.float32)
- output = kl_loss(loc, scale)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_kl_loss) < tol).all()
-
- class Basics(nn.Cell):
- """
- Test class: mode of Cauchy distribution.
- """
- def __init__(self):
- super(Basics, self).__init__()
- self.c = msd.Cauchy(np.array([3.0]), np.array([2.0, 4.0]), dtype=dtype.float32)
-
- def construct(self):
- return self.c.mode()
-
- def test_basics():
- """
- Test mode.
- """
- basics = Basics()
- mode = basics()
- expect_mode = np.array([3.0, 3.0])
- tol = 1e-6
- assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
-
- class Sampling(nn.Cell):
- """
- Test class: sample of Cauchy distribution.
- """
- def __init__(self, shape, seed=0):
- super(Sampling, self).__init__()
- self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), seed=seed, dtype=dtype.float32)
- self.shape = shape
-
- def construct(self, mean=None, sd=None):
- return self.c.sample(self.shape, mean, sd)
-
- def test_sample():
- """
- Test sample.
- """
- shape = (2, 3)
- seed = 10
- mean = Tensor([2.0], dtype=dtype.float32)
- sd = Tensor([2.0, 2.0, 2.0], dtype=dtype.float32)
- sample = Sampling(shape, seed=seed)
- output = sample(mean, sd)
- assert output.shape == (2, 3, 3)
-
- class CDF(nn.Cell):
- """
- Test class: cdf of Cauchy distribution.
- """
- def __init__(self):
- super(CDF, self).__init__()
- self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.c.cdf(x_)
-
-
- def test_cdf():
- """
- Test cdf.
- """
- cauchy_benchmark = stats.cauchy(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_cdf = cauchy_benchmark.cdf([1.0, 2.0]).astype(np.float32)
- cdf = CDF()
- output = cdf(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 2e-5
- assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
-
- class LogCDF(nn.Cell):
- """
- Test class: log_cdf of Cauchy distribution.
- """
- def __init__(self):
- super(LogCDF, self).__init__()
- self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.c.log_cdf(x_)
-
- def test_log_cdf():
- """
- Test log cdf.
- """
- cauchy_benchmark = stats.cauchy(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_logcdf = cauchy_benchmark.logcdf([1.0, 2.0]).astype(np.float32)
- logcdf = LogCDF()
- output = logcdf(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 5e-5
- assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
-
- class SF(nn.Cell):
- """
- Test class: survival function of Cauchy distribution.
- """
- def __init__(self):
- super(SF, self).__init__()
- self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.c.survival_function(x_)
-
- def test_survival():
- """
- Test log_survival.
- """
- cauchy_benchmark = stats.cauchy(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_survival = cauchy_benchmark.sf([1.0, 2.0]).astype(np.float32)
- survival_function = SF()
- output = survival_function(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 2e-5
- assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
-
- class LogSF(nn.Cell):
- """
- Test class: log survival function of Cauchy distribution.
- """
- def __init__(self):
- super(LogSF, self).__init__()
- self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.c.log_survival(x_)
-
- def test_log_survival():
- """
- Test log_survival.
- """
- cauchy_benchmark = stats.cauchy(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_log_survival = cauchy_benchmark.logsf([1.0, 2.0]).astype(np.float32)
- log_survival = LogSF()
- output = log_survival(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 2e-5
- assert (np.abs(output.asnumpy() - expect_log_survival) < tol).all()
-
- class EntropyH(nn.Cell):
- """
- Test class: entropy of Cauchy distribution.
- """
- def __init__(self):
- super(EntropyH, self).__init__()
- self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self):
- return self.c.entropy()
-
- def test_entropy():
- """
- Test entropy.
- """
- expect_entropy = np.log(4 * np.pi * np.array([[2.0], [4.0]]))
- entropy = EntropyH()
- output = entropy()
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_entropy) < tol).all()
-
- class CrossEntropy(nn.Cell):
- """
- Test class: cross entropy between Cauchy distributions.
- """
- def __init__(self):
- super(CrossEntropy, self).__init__()
- self.c = msd.Cauchy(np.array([3.]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, mu, s):
- entropy = self.c.entropy()
- kl_loss = self.c.kl_loss('Cauchy', mu, s)
- h_sum_kl = entropy + kl_loss
- cross_entropy = self.c.cross_entropy('Cauchy', mu, s)
- return h_sum_kl - cross_entropy
-
- def test_cross_entropy():
- """
- Test cross_entropy.
- """
- cross_entropy = CrossEntropy()
- mean = Tensor([1.0], dtype=dtype.float32)
- sd = Tensor([1.0], dtype=dtype.float32)
- diff = cross_entropy(mean, sd)
- tol = 1e-6
- assert (np.abs(diff.asnumpy() - np.zeros(diff.shape)) < tol).all()
|