You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_fuse.py 2.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. from mindspore import Tensor
  19. from mindspore.nn import Cell
  20. import mindspore.ops.operations as P
  21. from mindspore.nn.graph_kernels import ReLU
  22. context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
  23. class Net(Cell):
  24. def __init__(self):
  25. super(Net, self).__init__()
  26. self.add = P.TensorAdd()
  27. self.sub = P.Sub()
  28. self.mul = P.Mul()
  29. self.relu = ReLU()
  30. def construct(self, x, y):
  31. sub_res = self.sub(x, y)
  32. mul_res = self.mul(sub_res, x)
  33. relu_res = self.relu(mul_res)
  34. square_res = P.Square()(relu_res)
  35. add_res = self.add(relu_res, square_res)
  36. add1_res = self.add(add_res, add_res)
  37. return self.add(add1_res, add1_res)
  38. @pytest.mark.level0
  39. @pytest.mark.platform_x86_gpu_training
  40. @pytest.mark.env_onecard
  41. def test_basic():
  42. input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
  43. input_y = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
  44. sub_res = input_x - input_y
  45. mul_res = sub_res * input_x
  46. relu_res = np.maximum(mul_res, 0)
  47. square_res = np.square(relu_res)
  48. add_res = relu_res + square_res
  49. add1_res = add_res + add_res
  50. expect = add1_res + add1_res
  51. net = Net()
  52. result = net(Tensor(input_x), Tensor(input_y))
  53. res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True)
  54. assert res