You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_simplemean_grad.py 1.9 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. from mindspore import Tensor
  16. from mindspore.ops import operations as P
  17. import mindspore.nn as nn
  18. from mindspore.common.api import ms_function
  19. import numpy as np
  20. import mindspore.context as context
  21. from mindspore.common.initializer import initializer
  22. from mindspore.common.parameter import Parameter
  23. from mindspore.ops.composite import GradOperation
  24. context.set_context(device_target="Ascend")
  25. class Grad(nn.Cell):
  26. def __init__(self, network):
  27. super(Grad, self).__init__()
  28. self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
  29. self.network = network
  30. @ms_function
  31. def construct(self, input, output_grad):
  32. return self.grad(self.network)(input, output_grad)
  33. class Net(nn.Cell):
  34. def __init__(self):
  35. super(Net, self).__init__()
  36. self.simplemean = P.ReduceMean(keep_dims=True)
  37. def construct(self, x):
  38. return self.simplemean(x, (-2, -1))
  39. def test_net():
  40. x = np.random.randn(32,2048,7,7).astype(np.float32)
  41. sens = np.random.randn(32,2048, 1, 1).astype(np.float32)
  42. net = Grad(Net())
  43. output = net(Tensor(x), Tensor(sens))
  44. print(output.asnumpy())
  45. print(output.asnumpy().shape)