You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_apply_momentum.py 2.0 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. from mindspore import Tensor
  16. from mindspore.ops import operations as P
  17. import mindspore.nn as nn
  18. from mindspore.common.api import ms_function
  19. import numpy as np
  20. import mindspore.context as context
  21. from mindspore.common.initializer import initializer
  22. from mindspore.common.parameter import Parameter
  23. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  24. class Net(nn.Cell):
  25. def __init__(self):
  26. super(Net, self).__init__()
  27. self.apply_momentum = P.ApplyMomentum(gradient_scale=1024.0)
  28. self.variable = Parameter(initializer(
  29. 'normal', [2, 3, 3, 4]), name='variable')
  30. self.accumulation = Parameter(initializer(
  31. 'normal', [2, 3, 3, 4]), name='accumulation')
  32. self.learning_rate = Parameter(initializer(
  33. 'normal', [1, ]), name='learning_rate')
  34. self.gradient = Parameter(initializer(
  35. 'normal', [2, 3, 3, 4]), name='gradient')
  36. self.momentum = Parameter(initializer(
  37. 'normal', [1, ]), name='momentum')
  38. def construct(self):
  39. return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum)
  40. def test_net():
  41. apply_momentum = Net()
  42. output = apply_momentum()
  43. print(output.asnumpy())