|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import os
- import numpy as np
-
- import mindspore as ms
- from mindspore import context, Tensor, Parameter
- from mindspore.nn import Cell, Momentum
- from mindspore.ops import operations as P
- from mindspore.train import Model
- from mindspore.train.callback import CheckpointConfig, ModelCheckpoint
- from tests.dataset_mock import MindData
-
-
- class Dataset(MindData):
- def __init__(self, predict, label, length=3):
- super(Dataset, self).__init__(size=length)
- self.predict = predict
- self.label = label
- self.index = 0
- self.length = length
-
- def __iter__(self):
- return self
-
- def __next__(self):
- if self.index >= self.length:
- raise StopIteration
- self.index += 1
- return self.predict, self.label
-
- def reset(self):
- self.index = 0
-
-
- class Net(Cell):
- def __init__(self, weight, w2, begin, end, strides, strategy1=None, strategy2=None, mask=0):
- super().__init__()
- self.mul = P.Mul().shard(strategy1)
- self.strided_slice = P.StridedSlice(begin_mask=mask).shard(strategy2)
- self.weight = Parameter(weight, "w1")
- self.mul2 = P.Mul()
- self.weight2 = Parameter(w2, "w2")
- self.begin = begin
- self.end = end
- self.strides = strides
-
- def construct(self, x, b):
- out = self.strided_slice(
- self.weight, self.begin, self.end, self.strides)
- out = self.mul(x, out)
- out = self.mul2(out, self.weight2)
- return out
-
-
- _x = Tensor(np.ones([16, 64, 1]), dtype=ms.float32)
- _b = Tensor(np.ones([16, 64, 32]), dtype=ms.float32)
- _w1 = Tensor(np.ones([256, 64, 32]), dtype=ms.float32)
- _w2 = Tensor(np.ones([128, 64, 1]), dtype=ms.float32)
-
-
- def clean_all_ckpt_files(folder_path):
- if os.path.exists(folder_path):
- for file_name in os.listdir(folder_path):
- if file_name.endswith('.ckpt') or file_name.endswith('.meta'):
- os.remove(os.path.join(folder_path, file_name))
-
-
- def compile_net(net):
- context.set_context(save_graphs=False)
- learning_rate = 0.1
- momentum = 0.9
- epoch_size = 2
- dataset = Dataset(_x, _b)
- opt = Momentum(net.trainable_params(), learning_rate, momentum)
- model = Model(net, optimizer=opt)
- ckpt_config = CheckpointConfig(keep_checkpoint_max=1)
- ckpt_path = "./parallel_ckpt"
- ckpt_cb = ModelCheckpoint(prefix="parallel", directory=ckpt_path, config=ckpt_config)
- model.train(epoch_size, dataset, dataset_sink_mode=False, callbacks=[ckpt_cb])
- assert len(model._train_network.parallel_parameter_merge_net_dict) == 4
- clean_all_ckpt_files(ckpt_path)
- context.reset_auto_parallel_context()
-
-
- def test_stridedslice_parameter():
- context.set_auto_parallel_context(
- parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((1, 4, 1), (1, 4, 2))
- strategy2 = ((1, 4, 2),)
- net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1),
- strategy1, strategy2)
- compile_net(net)
|