You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_fbeta.py 2.2 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. # """test_fbeta"""
  16. import numpy as np
  17. import pytest
  18. from mindspore import Tensor
  19. from mindspore.nn.metrics import get_metric_fn, Fbeta
  20. def test_classification_fbeta():
  21. """test_classification_fbeta"""
  22. x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
  23. y = Tensor(np.array([1, 0, 1]))
  24. y2 = Tensor(np.array([[0, 1], [1, 0], [0, 1]]))
  25. metric = get_metric_fn('F1')
  26. metric.clear()
  27. metric.update(x, y)
  28. fbeta = metric.eval()
  29. fbeta_mean = metric.eval(True)
  30. fbeta2 = metric(x, y2)
  31. assert np.allclose(fbeta, np.array([2 / 3, 2 / 3]))
  32. assert np.allclose(fbeta2, np.array([2 / 3, 2 / 3]))
  33. assert np.allclose(fbeta_mean, 2 / 3)
  34. def test_fbeta_update1():
  35. x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
  36. y = Tensor(np.array([1, 0]))
  37. metric = Fbeta(2)
  38. metric.clear()
  39. with pytest.raises(ValueError):
  40. metric.update(x, y)
  41. def test_fbeta_update2():
  42. x1 = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
  43. y1 = Tensor(np.array([1, 0, 2]))
  44. x2 = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
  45. y2 = Tensor(np.array([1, 0, 2]))
  46. metric = Fbeta(2)
  47. metric.clear()
  48. metric.update(x1, y1)
  49. with pytest.raises(ValueError):
  50. metric.update(x2, y2)
  51. def test_fbeta_init():
  52. with pytest.raises(ValueError):
  53. Fbeta(0)
  54. def test_fbeta_runtime():
  55. metric = Fbeta(2)
  56. metric.clear()
  57. with pytest.raises(RuntimeError):
  58. metric.eval()