|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- # """test_fbeta"""
- import numpy as np
- import pytest
-
- from mindspore import Tensor
- from mindspore.nn.metrics import get_metric_fn, Fbeta
-
-
- def test_classification_fbeta():
- """test_classification_fbeta"""
- x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
- y = Tensor(np.array([1, 0, 1]))
- y2 = Tensor(np.array([[0, 1], [1, 0], [0, 1]]))
- metric = get_metric_fn('F1')
- metric.clear()
- metric.update(x, y)
- fbeta = metric.eval()
- fbeta_mean = metric.eval(True)
- fbeta2 = metric(x, y2)
-
- assert np.allclose(fbeta, np.array([2 / 3, 2 / 3]))
- assert np.allclose(fbeta2, np.array([2 / 3, 2 / 3]))
- assert np.allclose(fbeta_mean, 2 / 3)
-
-
- def test_fbeta_update1():
- x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
- y = Tensor(np.array([1, 0]))
- metric = Fbeta(2)
- metric.clear()
-
- with pytest.raises(ValueError):
- metric.update(x, y)
-
-
- def test_fbeta_update2():
- x1 = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
- y1 = Tensor(np.array([1, 0, 2]))
- x2 = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
- y2 = Tensor(np.array([1, 0, 2]))
- metric = Fbeta(2)
- metric.clear()
- metric.update(x1, y1)
-
- with pytest.raises(ValueError):
- metric.update(x2, y2)
-
-
- def test_fbeta_init():
- with pytest.raises(ValueError):
- Fbeta(0)
-
-
- def test_fbeta_runtime():
- metric = Fbeta(2)
- metric.clear()
-
- with pytest.raises(RuntimeError):
- metric.eval()
|