You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_sigmoid_op.py 1.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. class NetSigmoid(nn.Cell):
  22. def __init__(self):
  23. super(NetSigmoid, self).__init__()
  24. self.sigmoid = P.Sigmoid()
  25. def construct(self, x):
  26. return self.sigmoid(x)
  27. @pytest.mark.level0
  28. @pytest.mark.platform_x86_gpu_training
  29. @pytest.mark.env_onecard
  30. def test_sigmoid():
  31. x = Tensor(np.array([[[[-1, 1, 10],
  32. [1, -1, 1],
  33. [10, 1, -1]]]]).astype(np.float32))
  34. expect = np.array([[[[0.268941, 0.731059, 0.999955],
  35. [0.731059, 0.268941, 0.731059],
  36. [0.999955, 0.731059, 0.268941]]]]).astype(np.float32)
  37. error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6
  38. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  39. sigmoid = NetSigmoid()
  40. output = sigmoid(x)
  41. diff = output.asnumpy() - expect
  42. assert np.all(abs(diff) < error)
  43. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  44. sigmoid = NetSigmoid()
  45. output = sigmoid(x)
  46. diff = output.asnumpy() - expect
  47. assert np.all(abs(diff) < error)