You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_oneslike_op.py 2.8 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  22. class NetOnesLike(nn.Cell):
  23. def __init__(self):
  24. super(NetOnesLike, self).__init__()
  25. self.ones_like = P.OnesLike()
  26. def construct(self, x):
  27. return self.ones_like(x)
  28. @pytest.mark.level0
  29. @pytest.mark.platform_x86_gpu_training
  30. @pytest.mark.env_onecard
  31. def test_OnesLike():
  32. x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
  33. x1_np = np.random.uniform(-2, 2, 1).astype(np.float16)
  34. x2_np = np.zeros([3, 3, 3], dtype=np.int32)
  35. x0 = Tensor(x0_np)
  36. x1 = Tensor(x1_np)
  37. x2 = Tensor(x2_np)
  38. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  39. ones_like = NetOnesLike()
  40. output0 = ones_like(x0)
  41. expect0 = np.ones_like(x0_np)
  42. diff0 = output0.asnumpy() - expect0
  43. error0 = np.ones(shape=expect0.shape) * 1.0e-5
  44. assert np.all(diff0 < error0)
  45. assert output0.shape == expect0.shape
  46. output1 = ones_like(x1)
  47. expect1 = np.ones_like(x1_np)
  48. diff1 = output1.asnumpy() - expect1
  49. error1 = np.ones(shape=expect1.shape) * 1.0e-5
  50. assert np.all(diff1 < error1)
  51. assert output1.shape == expect1.shape
  52. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  53. ones_like = NetOnesLike()
  54. output0 = ones_like(x0)
  55. expect0 = np.ones_like(x0_np)
  56. diff0 = output0.asnumpy() - expect0
  57. error0 = np.ones(shape=expect0.shape) * 1.0e-5
  58. assert np.all(diff0 < error0)
  59. assert output0.shape == expect0.shape
  60. output1 = ones_like(x1)
  61. expect1 = np.ones_like(x1_np)
  62. diff1 = output1.asnumpy() - expect1
  63. error1 = np.ones(shape=expect1.shape) * 1.0e-5
  64. assert np.all(diff1 < error1)
  65. assert output1.shape == expect1.shape
  66. output2 = ones_like(x2)
  67. expect2 = np.ones_like(x2_np)
  68. diff2 = output2.asnumpy() - expect2
  69. error2 = np.ones(shape=expect2.shape) * 1.0e-5
  70. assert np.all(diff2 < error2)
  71. assert output2.shape == expect2.shape