|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
-
-
- class NetOnesLike(nn.Cell):
- def __init__(self):
- super(NetOnesLike, self).__init__()
- self.ones_like = P.OnesLike()
-
- def construct(self, x):
- return self.ones_like(x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_OnesLike():
- x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
- x1_np = np.random.uniform(-2, 2, 1).astype(np.float16)
- x2_np = np.zeros([3, 3, 3], dtype=np.int32)
-
- x0 = Tensor(x0_np)
- x1 = Tensor(x1_np)
- x2 = Tensor(x2_np)
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- ones_like = NetOnesLike()
- output0 = ones_like(x0)
- expect0 = np.ones_like(x0_np)
- diff0 = output0.asnumpy() - expect0
- error0 = np.ones(shape=expect0.shape) * 1.0e-5
- assert np.all(diff0 < error0)
- assert output0.shape == expect0.shape
-
- output1 = ones_like(x1)
- expect1 = np.ones_like(x1_np)
- diff1 = output1.asnumpy() - expect1
- error1 = np.ones(shape=expect1.shape) * 1.0e-5
- assert np.all(diff1 < error1)
- assert output1.shape == expect1.shape
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- ones_like = NetOnesLike()
- output0 = ones_like(x0)
- expect0 = np.ones_like(x0_np)
- diff0 = output0.asnumpy() - expect0
- error0 = np.ones(shape=expect0.shape) * 1.0e-5
- assert np.all(diff0 < error0)
- assert output0.shape == expect0.shape
-
- output1 = ones_like(x1)
- expect1 = np.ones_like(x1_np)
- diff1 = output1.asnumpy() - expect1
- error1 = np.ones(shape=expect1.shape) * 1.0e-5
- assert np.all(diff1 < error1)
- assert output1.shape == expect1.shape
-
- output2 = ones_like(x2)
- expect2 = np.ones_like(x2_np)
- diff2 = output2.asnumpy() - expect2
- error2 = np.ones(shape=expect2.shape) * 1.0e-5
- assert np.all(diff2 < error2)
- assert output2.shape == expect2.shape
|