You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_lessequal_op.py 2.2 kB

5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. from mindspore.common.tensor import Tensor
  19. from mindspore.nn import Cell
  20. from mindspore.ops import operations as P
  21. class Net(Cell):
  22. def __init__(self):
  23. super(Net, self).__init__()
  24. self.lessequal = P.LessEqual()
  25. def construct(self, x, y):
  26. return self.lessequal(x, y)
  27. @pytest.mark.level0
  28. @pytest.mark.platform_x86_gpu_training
  29. @pytest.mark.env_onecard
  30. def test_lessequal():
  31. x = Tensor(np.array([[1, 2, 3]]).astype(np.float32))
  32. y = Tensor(np.array([[2]]).astype(np.float32))
  33. expect = [[True, True, False]]
  34. x1 = Tensor(np.array([[1, 2, 3]]).astype(np.int16))
  35. y1 = Tensor(np.array([[2]]).astype(np.int16))
  36. expect = [[True, True, False]]
  37. x2 = Tensor(np.array([[1, 2, 3]]).astype(np.uint8))
  38. y2 = Tensor(np.array([[2]]).astype(np.uint8))
  39. expect = [[True, True, False]]
  40. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  41. lessequal = Net()
  42. output = lessequal(x, y)
  43. assert np.all(output.asnumpy() == expect)
  44. output = lessequal(x1, y1)
  45. assert np.all(output.asnumpy() == expect)
  46. output = lessequal(x2, y2)
  47. assert np.all(output.asnumpy() == expect)
  48. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  49. lessequal = Net()
  50. output = lessequal(x, y)
  51. assert np.all(output.asnumpy() == expect)
  52. output = lessequal(x1, y1)
  53. assert np.all(output.asnumpy() == expect)
  54. output = lessequal(x2, y2)
  55. assert np.all(output.asnumpy() == expect)