You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_erfc_op.py 1.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. from scipy import special
  18. import mindspore.context as context
  19. import mindspore.nn as nn
  20. from mindspore import Tensor
  21. from mindspore.ops import operations as P
  22. from mindspore import dtype
  23. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  24. class NetErfc(nn.Cell):
  25. def __init__(self):
  26. super(NetErfc, self).__init__()
  27. self.erfc = P.Erfc()
  28. def construct(self, x):
  29. return self.erfc(x)
  30. @pytest.mark.level0
  31. @pytest.mark.platform_x86_gpu_training
  32. @pytest.mark.env_onecard
  33. def test_erfc_fp32():
  34. erfc = NetErfc()
  35. x = np.random.rand(3, 8).astype(np.float32)
  36. output = erfc(Tensor(x, dtype=dtype.float32))
  37. expect = special.erfc(x)
  38. tol = 1e-6
  39. assert (np.abs(output.asnumpy() - expect) < tol).all()
  40. @pytest.mark.level0
  41. @pytest.mark.platform_x86_gpu_training
  42. @pytest.mark.env_onecard
  43. def test_erfc_fp16():
  44. erfc = NetErfc()
  45. x = np.random.rand(3, 8).astype(np.float16)
  46. output = erfc(Tensor(x, dtype=dtype.float16))
  47. expect = special.erfc(x)
  48. tol = 1e-3
  49. assert (np.abs(output.asnumpy() - expect) < tol).all()