You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_conv2d_depthwiseconv2d.py 2.3 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. import mindspore.common.dtype as mstype
  20. from mindspore.common.initializer import Normal
  21. from mindspore import Tensor
  22. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  23. @pytest.mark.level0
  24. @pytest.mark.platform_x86_ascend_training
  25. @pytest.mark.platform_arm_ascend_training
  26. @pytest.mark.env_onecard
  27. def test_conv2d_depthwiseconv2d_str():
  28. net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal')
  29. input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
  30. output = net(input_data)
  31. assert output.shape == (3, 128, 32, 28)
  32. @pytest.mark.level0
  33. @pytest.mark.platform_x86_ascend_training
  34. @pytest.mark.platform_arm_ascend_training
  35. @pytest.mark.env_onecard
  36. def test_conv2d_depthwiseconv2d_initializer():
  37. net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal())
  38. input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
  39. output = net(input_data)
  40. assert output.shape == (3, 128, 32, 28)
  41. @pytest.mark.level0
  42. @pytest.mark.platform_x86_ascend_training
  43. @pytest.mark.platform_arm_ascend_training
  44. @pytest.mark.env_onecard
  45. def test_conv2d_depthwiseconv2d_tensor():
  46. weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32))
  47. net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init)
  48. input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
  49. output = net(input_data)
  50. assert output.shape == (3, 128, 32, 28)