You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataset_helper.py 6.9 kB

5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Dataset help for minddata dataset"""
  16. from mindspore import context
  17. from mindspore._checkparam import check_bool
  18. from mindspore.nn.wrap import GetNextSingleOp
  19. from mindspore.parallel._utils import _get_device_num, _get_global_rank, _get_parallel_mode
  20. from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, _to_tensor, \
  21. _construct_tensor_list, _to_full_shapes, _to_full_tensor
  22. from mindspore.train.parallel_utils import ParallelMode
  23. class DatasetHelper:
  24. """
  25. Help function to use the Minddata dataset.
  26. According to different context, change the iter of dataset, to use the same for loop in different context.
  27. Note:
  28. The iter of DatasetHelper will give one epoch data.
  29. Args:
  30. dataset (DataSet): The dataset.
  31. dataset_sink_mode (bool): If true use GetNext to fetch the data, or else feed the data from host.
  32. Default: True.
  33. Examples:
  34. >>> dataset_helper = DatasetHelper(dataset)
  35. >>> for inputs in dataset_helper:
  36. >>> outputs = network(*inputs)
  37. """
  38. def __init__(self, dataset, first_order_iter=0, dataset_sink_mode=True):
  39. check_bool(dataset_sink_mode)
  40. iterclass = _DatasetIterGE
  41. if not dataset_sink_mode:
  42. iterclass = _DatasetIterFeed
  43. elif not context.get_context("enable_ge"):
  44. if context.get_context("enable_loop_sink"):
  45. iterclass = _DatasetIterMSLoopSink
  46. else:
  47. iterclass = _DatasetIterMS
  48. self.iter = iterclass(dataset, first_order_iter)
  49. def __iter__(self):
  50. return self.iter.__iter__()
  51. # A temp solution for loop sink. Delete later
  52. def types_shapes(self):
  53. """Get the types and shapes from dataset on current config."""
  54. return self.iter.types_shapes()
  55. def loop_size(self):
  56. """Get loop_size for every iteration."""
  57. return self.iter.loop_size
  58. class _DatasetIter:
  59. """Base iter for dataset help"""
  60. def __init__(self, dataset):
  61. self.loop_size = 1
  62. if not hasattr(dataset, '__ME_INITED__'):
  63. if not hasattr(dataset, '__loop_size__'):
  64. self.loop_size = dataset.get_dataset_size()
  65. else:
  66. self.loop_size = dataset.__loop_size__
  67. dataset.__ME_INITED__ = _exec_datagraph(dataset, self.loop_size).queue_name
  68. self.ind = 0
  69. self.dataset = dataset
  70. dataset_types, dataset_shapes = _get_types_and_shapes(dataset)
  71. self.dataset_types, self.dataset_shapes = dataset_types, dataset_shapes
  72. # for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to
  73. # compile, and slice tensor to run. The batch dimension of tensors for compile is device_number
  74. # times the batch dimension of tensors for run
  75. if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
  76. device_num = _get_device_num()
  77. self.dataset_shapes = _to_full_shapes(dataset_shapes, device_num)
  78. def __iter__(self):
  79. self.ind = 0
  80. return self
  81. def __next__(self):
  82. if self.ind >= self.loop_count:
  83. raise StopIteration()
  84. self.ind += 1
  85. return self.op()
  86. def types_shapes(self):
  87. return self.dataset_types, self.dataset_shapes
  88. def get_loop_count(self, dataset):
  89. loop_count = 1
  90. if hasattr(dataset, '__loop_size__'):
  91. loop_size = dataset.__loop_size__
  92. loop_count = int(dataset.get_dataset_size() / loop_size)
  93. return loop_count
  94. class _DatasetIterMSLoopSink(_DatasetIter):
  95. """Iter for context (enable_loop_sink=True)"""
  96. def __init__(self, dataset, first_order_iter):
  97. super(_DatasetIterMSLoopSink, self).__init__(dataset)
  98. # self.loop_count = self.get_loop_count(dataset)
  99. loop_size = dataset.__loop_size__ + first_order_iter
  100. self.loop_count = int(dataset.get_dataset_size() / loop_size) * 2
  101. def op():
  102. return tuple()
  103. self.op = op
  104. class _DatasetIterMS(_DatasetIter):
  105. """Iter for context (enable_loop_sink=False)"""
  106. def __init__(self, dataset, first_order_order):
  107. super(_DatasetIterMS, self).__init__(dataset)
  108. self.loop_count = dataset.get_dataset_size()
  109. self.loop_size = 1
  110. queue_name = dataset.__ME_INITED__
  111. self.op = GetNextSingleOp(self.dataset_types, self.dataset_shapes, queue_name)
  112. class _DatasetIterGE(_DatasetIter):
  113. """Iter for ge"""
  114. def __init__(self, dataset):
  115. super(_DatasetIterGE, self).__init__(dataset)
  116. self.loop_count = self.get_loop_count(dataset)
  117. parallel_mode = _get_parallel_mode()
  118. self.need_to_full = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
  119. batch_expand_num = 1
  120. if self.need_to_full:
  121. batch_expand_num = _get_device_num()
  122. tensor_list_run = _construct_tensor_list(self.dataset_types, self.dataset_shapes, batch_expand_num)
  123. def op():
  124. return tensor_list_run
  125. self.op = op
  126. class _DatasetIterFeed:
  127. """Iter for feed data"""
  128. def __init__(self, dataset, first_order_order):
  129. self.dataset = dataset
  130. self.device_num = _get_device_num()
  131. self.global_rank = _get_global_rank()
  132. self.repeat_count = dataset.get_repeat_count()
  133. self.repeat_ind = 0
  134. self.loop_count = dataset.get_dataset_size()
  135. self.ind = 0
  136. parallel_mode = context.get_auto_parallel_context("parallel_mode")
  137. self.need_to_full = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
  138. def __iter__(self):
  139. if self.repeat_ind % self.repeat_count == 0:
  140. self.iter = self.dataset.__iter__()
  141. self.repeat_ind += 1
  142. self.ind = 0
  143. return self
  144. def __next__(self):
  145. if self.ind >= self.loop_count:
  146. raise StopIteration()
  147. self.ind += 1
  148. data = self.iter.__next__()
  149. if self.need_to_full:
  150. return _to_full_tensor(data, self.device_num, self.global_rank)
  151. return _to_tensor(data)