You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 5.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train_imagenet."""
  16. import argparse
  17. import os
  18. import random
  19. import numpy as np
  20. from network import ShuffleNetV2
  21. import mindspore.nn as nn
  22. from mindspore import context
  23. from mindspore import dataset as de
  24. from mindspore import ParallelMode
  25. from mindspore import Tensor
  26. from mindspore.communication.management import init, get_rank, get_group_size
  27. from mindspore.nn.optim.momentum import Momentum
  28. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  29. from mindspore.train.model import Model
  30. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  31. from src.config import config_gpu as cfg
  32. from src.dataset import create_dataset
  33. from src.lr_generator import get_lr_basic
  34. random.seed(cfg.random_seed)
  35. np.random.seed(cfg.random_seed)
  36. de.config.set_seed(cfg.random_seed)
  37. if __name__ == '__main__':
  38. parser = argparse.ArgumentParser(description='image classification training')
  39. parser.add_argument('--dataset_path', type=str, default='/home/data/imagenet_jpeg/train/', help='Dataset path')
  40. parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
  41. parser.add_argument('--is_distributed', action='store_true', default=False,
  42. help='distributed training')
  43. parser.add_argument('--platform', type=str, default='GPU', choices=('Ascend', 'GPU'), help='run platform')
  44. parser.add_argument('--model_size', type=str, default='1.0x', help='ShuffleNetV2 model size parameter')
  45. args_opt = parser.parse_args()
  46. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False)
  47. if os.getenv('DEVICE_ID', "not_set").isdigit():
  48. context.set_context(device_id=int(os.getenv('DEVICE_ID')))
  49. # init distributed
  50. if args_opt.is_distributed:
  51. if args_opt.platform == "Ascend":
  52. init()
  53. else:
  54. init("nccl")
  55. cfg.rank = get_rank()
  56. cfg.group_size = get_group_size()
  57. parallel_mode = ParallelMode.DATA_PARALLEL
  58. context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=cfg.group_size,
  59. parameter_broadcast=True, mirror_mean=True)
  60. else:
  61. cfg.rank = 0
  62. cfg.group_size = 1
  63. # dataloader
  64. dataset = create_dataset(args_opt.dataset_path, True, cfg.rank, cfg.group_size)
  65. batches_per_epoch = dataset.get_dataset_size()
  66. print("Batches Per Epoch: ", batches_per_epoch)
  67. # network
  68. net = ShuffleNetV2(n_class=cfg.num_classes, model_size=args_opt.model_size)
  69. # loss
  70. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean", is_grad=False,
  71. smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes)
  72. # learning rate schedule
  73. lr = get_lr_basic(lr_init=cfg.lr_init, total_epochs=cfg.epoch_size,
  74. steps_per_epoch=batches_per_epoch, is_stair=True)
  75. lr = Tensor(lr)
  76. # optimizer
  77. decayed_params = []
  78. no_decayed_params = []
  79. for param in net.trainable_params():
  80. if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
  81. decayed_params.append(param)
  82. else:
  83. no_decayed_params.append(param)
  84. group_params = [{'params': decayed_params, 'weight_decay': cfg.weight_decay},
  85. {'params': no_decayed_params},
  86. {'order_params': net.trainable_params()}]
  87. optimizer = Momentum(params=net.trainable_params(), learning_rate=Tensor(lr), momentum=cfg.momentum,
  88. weight_decay=cfg.weight_decay)
  89. eval_metrics = {'Loss': nn.Loss(),
  90. 'Top1-Acc': nn.Top1CategoricalAccuracy(),
  91. 'Top5-Acc': nn.Top5CategoricalAccuracy()}
  92. if args_opt.resume:
  93. ckpt = load_checkpoint(args_opt.resume)
  94. load_param_into_net(net, ckpt)
  95. model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={'acc'})
  96. print("============== Starting Training ==============")
  97. loss_cb = LossMonitor(per_print_times=batches_per_epoch)
  98. time_cb = TimeMonitor(data_size=batches_per_epoch)
  99. callbacks = [loss_cb, time_cb]
  100. config_ck = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=cfg.keep_checkpoint_max)
  101. ckpoint_cb = ModelCheckpoint(prefix=f"shufflenet-rank{cfg.rank}", directory=cfg.ckpt_path, config=config_ck)
  102. if args_opt.is_distributed & cfg.is_save_on_master:
  103. if cfg.rank == 0:
  104. callbacks.append(ckpoint_cb)
  105. model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True)
  106. else:
  107. callbacks.append(ckpoint_cb)
  108. model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True)
  109. print("train success")