|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test_mean """
- import mindspore as ms
- from mindspore import nn
- from mindspore import context
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- def test_mean():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.value = ms.Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32)
-
- def construct(self):
- return self.value.mean()
-
- net = Net()
- net()
-
-
- def test_mean_axis():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.value = ms.Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32)
-
- def construct(self):
- return self.value.mean(axis=1)
-
- net = Net()
- net()
-
-
- def test_mean_parameter():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
-
- def construct(self, x):
- return x.mean()
-
- x = ms.Tensor([[1, 2, 3], [1, 2, 3]], dtype=ms.float32)
- net = Net()
- net(x)
-
-
- def test_mean_parameter_axis():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
-
- def construct(self, x):
- return x.mean(axis=1)
-
- x = ms.Tensor([[1, 2, 3], [1, 2, 3]], dtype=ms.float32)
- net = Net()
- net(x)
|