You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_square_op.py 2.7 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops.operations import _inner_ops as inner
  21. from mindspore.ops import operations as P
  22. @pytest.mark.level0
  23. @pytest.mark.platform_x86_gpu_training
  24. @pytest.mark.env_onecard
  25. def test_square_normal():
  26. context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
  27. x_np = np.random.rand(2, 3, 4, 4).astype(np.float32)
  28. output_ms = P.Square()(Tensor(x_np))
  29. output_np = np.square(x_np)
  30. assert np.allclose(output_ms.asnumpy(), output_np)
  31. x_np = np.random.rand(2, 3, 1, 5, 4, 4).astype(np.float32)
  32. output_ms = P.Square()(Tensor(x_np))
  33. output_np = np.square(x_np)
  34. assert np.allclose(output_ms.asnumpy(), output_np)
  35. x_np = np.random.rand(2,).astype(np.float32)
  36. output_ms = P.Square()(Tensor(x_np))
  37. output_np = np.square(x_np)
  38. assert np.allclose(output_ms.asnumpy(), output_np)
  39. # Dynamic Shape Testing
  40. class SqaureNetDynamic(nn.Cell):
  41. def __init__(self):
  42. super(SqaureNetDynamic, self).__init__()
  43. self.square = P.Square()
  44. self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape()
  45. def construct(self, x):
  46. x_dyn = self.gpu_convert_to_dynamic_shape(x)
  47. return self.square(x_dyn)
  48. @pytest.mark.level0
  49. @pytest.mark.platform_x86_gpu_training
  50. @pytest.mark.env_onecard
  51. def test_square_dynamic():
  52. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  53. net = SqaureNetDynamic()
  54. x_np = np.random.rand(1, 3, 4, 4, 1).astype(np.float32)
  55. output_ms = net(Tensor(x_np))
  56. output_np = np.square(x_np)
  57. assert np.allclose(output_ms.asnumpy(), output_np)
  58. x_np = np.random.rand(2, 3, 4, 4, 8, 9).astype(np.float16)
  59. output_ms = net(Tensor(x_np))
  60. output_np = np.square(x_np)
  61. assert np.allclose(output_ms.asnumpy(), output_np)
  62. x_np = np.random.rand(1).astype(np.float32)
  63. output_ms = net(Tensor(x_np))
  64. output_np = np.square(x_np)
  65. assert np.allclose(output_ms.asnumpy(), output_np)