You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_squeeze_op.py 3.0 kB

5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. from mindspore import Tensor
  19. from mindspore.nn import Cell
  20. import mindspore.ops as P
  21. context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
  22. class SqueezeNet(Cell):
  23. def __init__(self):
  24. super(SqueezeNet, self).__init__()
  25. self.squeeze = P.Squeeze()
  26. def construct(self, x):
  27. return self.squeeze(x)
  28. @pytest.mark.level0
  29. @pytest.mark.platform_x86_cpu
  30. @pytest.mark.env_onecard
  31. def test_squeeze_shape_float32():
  32. x = np.ones(shape=[1, 2, 1, 1, 8, 3, 1]).astype(np.float32)
  33. expect = np.ones(shape=[2, 8, 3]).astype(np.float32)
  34. net = SqueezeNet()
  35. result = net(Tensor(x))
  36. assert np.allclose(result.asnumpy(), expect, rtol=1.e-4,
  37. atol=1.e-8, equal_nan=True)
  38. @pytest.mark.level0
  39. @pytest.mark.platform_x86_cpu
  40. @pytest.mark.env_onecard
  41. def test_squeeze_shape_int32():
  42. x = np.array([[7], [11]]).astype(np.int32)
  43. expect = np.array([7, 11]).astype(np.int32)
  44. net = SqueezeNet()
  45. result = net(Tensor(x))
  46. assert np.allclose(result.asnumpy(), expect, rtol=1.e-4,
  47. atol=1.e-8, equal_nan=True)
  48. @pytest.mark.level0
  49. @pytest.mark.platform_x86_cpu
  50. @pytest.mark.env_onecard
  51. def test_squeeze_shape_bool():
  52. x = np.array([[True], [False]]).astype(np.bool_)
  53. expect = np.array([True, False]).astype(np.bool_)
  54. net = SqueezeNet()
  55. result = net(Tensor(x))
  56. assert np.allclose(result.asnumpy(), expect, rtol=1.e-4,
  57. atol=1.e-8, equal_nan=True)
  58. @pytest.mark.level0
  59. @pytest.mark.platform_x86_cpu
  60. @pytest.mark.env_onecard
  61. def test_squeeze_shape_float64():
  62. x = np.random.random([1, 2, 1, 1, 8, 3, 1]).astype(np.float64)
  63. expect = np.squeeze(x)
  64. net = SqueezeNet()
  65. result = net(Tensor(x))
  66. print(result.asnumpy()[0][0], expect[0][0])
  67. assert np.allclose(result.asnumpy(), expect, rtol=1.e-4,
  68. atol=1.e-8, equal_nan=True)
  69. @pytest.mark.level0
  70. @pytest.mark.platform_x86_cpu
  71. @pytest.mark.env_onecard
  72. def test_squeeze_shape_uint16():
  73. x = np.random.random([1, 2, 1, 1, 8, 3, 1]).astype(np.uint16)
  74. expect = np.squeeze(x)
  75. net = SqueezeNet()
  76. result = net(Tensor(x))
  77. print(result.asnumpy()[0][0], expect[0][0])
  78. assert np.allclose(result.asnumpy(), expect, rtol=1.e-4,
  79. atol=1.e-8, equal_nan=True)