You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_sqrt_op.py 2.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. from mindspore.ops.operations import _grad_ops as G
  22. context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
  23. class NetSqrtGrad(nn.Cell):
  24. def __init__(self):
  25. super(NetSqrtGrad, self).__init__()
  26. self.sqrt_grad = G.SqrtGrad()
  27. def construct(self, x, dx):
  28. return self.sqrt_grad(x, dx)
  29. class Net(nn.Cell):
  30. def __init__(self):
  31. super(Net, self).__init__()
  32. self.ops = P.Sqrt()
  33. def construct(self, x):
  34. return self.ops(x)
  35. @pytest.mark.level0
  36. @pytest.mark.platform_x86_cpu
  37. @pytest.mark.env_onecard
  38. def test_net():
  39. x = np.abs(np.random.randn(2, 3, 3, 4)).astype(np.float32)
  40. y_expect = np.sqrt(x)
  41. net = Net()
  42. out = net(Tensor(x))
  43. diff = out.asnumpy() - y_expect
  44. err = np.ones(shape=y_expect.shape) * 1.0e-5
  45. assert np.all(diff < err)
  46. assert out.shape == y_expect.shape
  47. @pytest.mark.level0
  48. @pytest.mark.platform_x86_cpu
  49. @pytest.mark.env_onecard
  50. def test_sqrt_grad():
  51. x = Tensor(np.array([[[[-1, 1, 10],
  52. [5.9, 6.1, 6],
  53. [10, 1, -1]]]]).astype(np.float32))
  54. dx = Tensor(np.array([[[[1, 1, 1],
  55. [2, 2, 2],
  56. [3, 3, 3]]]]).astype(np.float32))
  57. expect = np.array([[[[-0.5, 0.5, 0.05,],
  58. [0.16949153, 0.16393442, 0.16666667,],
  59. [0.15, 1.5, -1.5,]]]]).astype(np.float32)
  60. error = np.ones(shape=[3, 3]) * 1.0e-6
  61. sqrt_grad = NetSqrtGrad()
  62. output = sqrt_grad(x, dx)
  63. diff = np.abs(output.asnumpy() - expect)
  64. assert np.all(np.abs(diff) < error)