You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_split_op.py 8.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
  22. class OpNetWrapper(nn.Cell):
  23. def __init__(self, op):
  24. super(OpNetWrapper, self).__init__()
  25. self.op = op
  26. def construct(self, *inputs):
  27. return self.op(*inputs)
  28. @pytest.mark.level0
  29. @pytest.mark.platform_x86_cpu
  30. @pytest.mark.env_onecard
  31. def test_out1_axis0():
  32. op = P.Split(0, 1)
  33. op_wrapper = OpNetWrapper(op)
  34. input_x = Tensor(np.arange(24).astype(np.int32).reshape((2, 2, 6)))
  35. outputs = op_wrapper(input_x)
  36. print(outputs)
  37. assert outputs[0].shape == (2, 2, 6)
  38. assert np.allclose(outputs[0].asnumpy()[0, 0, :], [0, 1, 2, 3, 4, 5])
  39. @pytest.mark.level0
  40. @pytest.mark.platform_x86_cpu
  41. @pytest.mark.env_onecard
  42. def test_out2_axis2():
  43. op = P.Split(2, 2)
  44. op_wrapper = OpNetWrapper(op)
  45. input_x = Tensor(np.arange(24).astype(np.int32).reshape((2, 2, 6)))
  46. outputs = op_wrapper(input_x)
  47. print(outputs)
  48. assert outputs[0].shape == (2, 2, 3)
  49. assert outputs[1].shape == (2, 2, 3)
  50. assert np.allclose(outputs[0].asnumpy()[0, 0, :], [0, 1, 2])
  51. assert np.allclose(outputs[1].asnumpy()[0, 0, :], [3, 4, 5])
  52. @pytest.mark.level0
  53. @pytest.mark.platform_x86_cpu
  54. @pytest.mark.env_onecard
  55. def test_out2_axis1neg():
  56. op = P.Split(-1, 2)
  57. op_wrapper = OpNetWrapper(op)
  58. input_x = Tensor(np.arange(24).astype(np.float32).reshape((2, 2, 6)))
  59. outputs = op_wrapper(input_x)
  60. print(outputs)
  61. assert np.allclose(outputs[0].asnumpy()[0, :, :], [[0., 1., 2.], [6., 7., 8.]])
  62. assert np.allclose(outputs[1].asnumpy()[0, :, :], [[3., 4., 5.], [9., 10., 11.]])
  63. @pytest.mark.level0
  64. @pytest.mark.platform_x86_cpu
  65. @pytest.mark.env_onecard
  66. def test_out_float32():
  67. op = P.Split(5, 2)
  68. op_wrapper = OpNetWrapper(op)
  69. input_x = Tensor(np.arange(192).astype(np.float32).reshape((2, 2, 2, 2, 2, 6)))
  70. outputs = op_wrapper(input_x)
  71. assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1., 2.])
  72. assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3., 4., 5.])
  73. op = P.Split(5, 3)
  74. op_wrapper = OpNetWrapper(op)
  75. outputs = op_wrapper(input_x)
  76. assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1.])
  77. assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [2., 3.])
  78. assert np.allclose(outputs[2].asnumpy()[0, 0, 0, 0, 0, :], [4., 5.])
  79. @pytest.mark.level0
  80. @pytest.mark.platform_x86_cpu
  81. @pytest.mark.env_onecard
  82. def test_out_float64():
  83. op = P.Split(5, 2)
  84. op_wrapper = OpNetWrapper(op)
  85. input_x = Tensor(np.arange(192).astype(np.float64).reshape((2, 2, 2, 2, 2, 6)))
  86. outputs = op_wrapper(input_x)
  87. assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1., 2.])
  88. assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3., 4., 5.])
  89. op = P.Split(5, 3)
  90. op_wrapper = OpNetWrapper(op)
  91. outputs = op_wrapper(input_x)
  92. assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1.])
  93. assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [2., 3.])
  94. assert np.allclose(outputs[2].asnumpy()[0, 0, 0, 0, 0, :], [4., 5.])
  95. @pytest.mark.level0
  96. @pytest.mark.platform_x86_cpu
  97. @pytest.mark.env_onecard
  98. def test_out_float16():
  99. op = P.Split(-1, 2)
  100. op_wrapper = OpNetWrapper(op)
  101. input_x = Tensor(np.arange(320).astype(np.float16).reshape((2, 2, 2, 2, 2, 10)))
  102. outputs = op_wrapper(input_x)
  103. assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1., 2., 3., 4.])
  104. assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [5., 6., 7., 8., 9.])
  105. op = P.Split(-1, 5)
  106. op_wrapper = OpNetWrapper(op)
  107. outputs = op_wrapper(input_x)
  108. assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1.])
  109. assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [2., 3.])
  110. assert np.allclose(outputs[2].asnumpy()[0, 0, 0, 0, 0, :], [4., 5.])
  111. assert np.allclose(outputs[3].asnumpy()[0, 0, 0, 0, 0, :], [6., 7.])
  112. assert np.allclose(outputs[4].asnumpy()[0, 0, 0, 0, 0, :], [8., 9.])
  113. @pytest.mark.level0
  114. @pytest.mark.platform_x86_cpu
  115. @pytest.mark.env_onecard
  116. def test_out_int32():
  117. op = P.Split(5, 2)
  118. op_wrapper = OpNetWrapper(op)
  119. input_x = Tensor(np.arange(192).astype(np.int32).reshape((2, 2, 2, 2, 2, 6)))
  120. outputs = op_wrapper(input_x)
  121. assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0, 1, 2])
  122. assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3, 4, 5])
  123. op = P.Split(5, 3)
  124. op_wrapper = OpNetWrapper(op)
  125. outputs = op_wrapper(input_x)
  126. assert np.allclose(outputs[0].asnumpy()[1, 0, 0, 0, 0, :], [96, 97])
  127. assert np.allclose(outputs[1].asnumpy()[1, 0, 0, 0, 0, :], [98, 99])
  128. assert np.allclose(outputs[2].asnumpy()[1, 0, 0, 0, 0, :], [100, 101])
  129. @pytest.mark.level0
  130. @pytest.mark.platform_x86_cpu
  131. @pytest.mark.env_onecard
  132. def test_out_int64():
  133. op = P.Split(5, 2)
  134. op_wrapper = OpNetWrapper(op)
  135. input_x = Tensor(np.arange(192).astype(np.int64).reshape((2, 2, 2, 2, 2, 6)))
  136. outputs = op_wrapper(input_x)
  137. assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0, 1, 2])
  138. assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3, 4, 5])
  139. op = P.Split(5, 3)
  140. op_wrapper = OpNetWrapper(op)
  141. outputs = op_wrapper(input_x)
  142. assert np.allclose(outputs[0].asnumpy()[1, 0, 0, 0, 0, :], [96, 97])
  143. assert np.allclose(outputs[1].asnumpy()[1, 0, 0, 0, 0, :], [98, 99])
  144. assert np.allclose(outputs[2].asnumpy()[1, 0, 0, 0, 0, :], [100, 101])
  145. @pytest.mark.level0
  146. @pytest.mark.platform_x86_cpu
  147. @pytest.mark.env_onecard
  148. def test_out_uint32():
  149. op = P.Split(-1, 2)
  150. op_wrapper = OpNetWrapper(op)
  151. input_x = Tensor(np.arange(320).astype(np.uint32).reshape((2, 2, 2, 2, 2, 10)))
  152. outputs = op_wrapper(input_x)
  153. assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0, 1, 2, 3, 4])
  154. assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [5, 6, 7, 8, 9])
  155. op = P.Split(-1, 5)
  156. op_wrapper = OpNetWrapper(op)
  157. outputs = op_wrapper(input_x)
  158. assert np.allclose(outputs[0].asnumpy()[1, 1, 1, 1, 1, :], [310, 311])
  159. assert np.allclose(outputs[1].asnumpy()[1, 1, 1, 1, 1, :], [312, 313])
  160. assert np.allclose(outputs[2].asnumpy()[1, 1, 1, 1, 1, :], [314, 315])
  161. assert np.allclose(outputs[3].asnumpy()[1, 1, 1, 1, 1, :], [316, 317])
  162. assert np.allclose(outputs[4].asnumpy()[1, 1, 1, 1, 1, :], [318, 319])
  163. op = P.Split(-2, 2)
  164. op_wrapper = OpNetWrapper(op)
  165. outputs = op_wrapper(input_x)
  166. assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, :, 0], [0])
  167. assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, :, 1], [11])
  168. assert np.allclose(outputs[0].asnumpy()[1, 0, 0, 0, :, 2], [162])
  169. assert np.allclose(outputs[1].asnumpy()[1, 0, 0, 0, :, 3], [173])
  170. assert np.allclose(outputs[0].asnumpy()[1, 1, 0, 0, :, 4], [244])
  171. assert np.allclose(outputs[1].asnumpy()[1, 1, 0, 0, :, 5], [255])
  172. assert np.allclose(outputs[0].asnumpy()[1, 1, 1, 0, :, 6], [286])
  173. assert np.allclose(outputs[1].asnumpy()[1, 1, 1, 0, :, 7], [297])
  174. assert np.allclose(outputs[0].asnumpy()[1, 1, 1, 1, :, 8], [308])
  175. assert np.allclose(outputs[1].asnumpy()[1, 1, 1, 1, :, 9], [319])
  176. op = P.Split(-1, 1)
  177. op_wrapper = OpNetWrapper(op)
  178. input_x = Tensor(np.arange(1).astype(np.uint32))
  179. outputs = op_wrapper(input_x)
  180. assert np.allclose(outputs[0].asnumpy(), [0])
  181. if __name__ == '__main__':
  182. test_out1_axis0()
  183. test_out2_axis2()
  184. test_out2_axis1neg()