|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- # VGG16 Example
-
- ## Description
-
- This example is for VGG16 model training and evaluation.
-
- ## Requirements
-
- - Install [MindSpore](https://www.mindspore.cn/install/en).
-
- - Download the dataset CIFAR-10 or ImageNet2012.
-
- CIFAR-10
-
- > Unzip the CIFAR-10 dataset to any path you want and the folder structure should be as follows:
- > ```
- > .
- > ├── cifar-10-batches-bin # train dataset
- > └── cifar-10-verify-bin # infer dataset
- > ```
-
- ImageNet2012
-
- > Unzip the ImageNet2012 dataset to any path you want and the folder should include train and eval dataset as follows:
- >
- > ```
- > .
- > └─dataset
- > ├─ilsvrc # train dataset
- > └─validation_preprocess # evaluate dataset
- > ```
-
- ## Parameter configuration
-
- Parameters for both training and evaluation can be set in config.py.
-
- - config for vgg16, CIFAR-10 dataset
-
- ```
- "num_classes": 10, # dataset class num
- "lr": 0.01, # learning rate
- "lr_init": 0.01, # initial learning rate
- "lr_max": 0.1, # max learning rate
- "lr_epochs": '30,60,90,120', # lr changing based epochs
- "lr_scheduler": "step", # learning rate mode
- "warmup_epochs": 5, # number of warmup epoch
- "batch_size": 64, # batch size of input tensor
- "max_epoch": 70, # only valid for taining, which is always 1 for inference
- "momentum": 0.9, # momentum
- "weight_decay": 5e-4, # weight decay
- "loss_scale": 1.0, # loss scale
- "label_smooth": 0, # label smooth
- "label_smooth_factor": 0, # label smooth factor
- "buffer_size": 10, # shuffle buffer size
- "image_size": '224,224', # image size
- "pad_mode": 'same', # pad mode for conv2d
- "padding": 0, # padding value for conv2d
- "has_bias": False, # whether has bias in conv2d
- "batch_norm": True, # wether has batch_norm in conv2d
- "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
- "initialize_mode": "XavierUniform", # conv2d init mode
- "has_dropout": True # wether using Dropout layer
- ```
-
- - config for vgg16, ImageNet2012 dataset
-
- ```
- "num_classes": 1000, # dataset class num
- "lr": 0.01, # learning rate
- "lr_init": 0.01, # initial learning rate
- "lr_max": 0.1, # max learning rate
- "lr_epochs": '30,60,90,120', # lr changing based epochs
- "lr_scheduler": "cosine_annealing", # learning rate mode
- "warmup_epochs": 0, # number of warmup epoch
- "batch_size": 32, # batch size of input tensor
- "max_epoch": 150, # only valid for taining, which is always 1 for inference
- "momentum": 0.9, # momentum
- "weight_decay": 1e-4, # weight decay
- "loss_scale": 1024, # loss scale
- "label_smooth": 1, # label smooth
- "label_smooth_factor": 0.1, # label smooth factor
- "buffer_size": 10, # shuffle buffer size
- "image_size": '224,224', # image size
- "pad_mode": 'pad', # pad mode for conv2d
- "padding": 1, # padding value for conv2d
- "has_bias": True, # whether has bias in conv2d
- "batch_norm": False, # wether has batch_norm in conv2d
- "keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
- "initialize_mode": "KaimingNormal", # conv2d init mode
- "has_dropout": True # wether using Dropout layer
- ```
-
- ## Running the Example
-
- ### Training
- **Run vgg16, using CIFAR-10 dataset**
-
- - Training using single device(1p)
- ```
- python train.py --data_path=your_data_path --device_id=6 > out.train.log 2>&1 &
- ```
- The python command above will run in the background, you can view the results through the file `out.train.log`.
-
- After training, you'll get some checkpoint files in specified ckpt_path, default in ./output directory.
-
- You will get the loss value as following:
- ```
- # grep "loss is " out.train.log
- epoch: 1 step: 781, loss is 2.093086
- epcoh: 2 step: 781, loss is 1.827582
- ...
- ```
-
- - Distribute Training
- ```
- sh run_distribute_train.sh rank_table.json your_data_path
- ```
- The above shell script will run distribute training in the background, you can view the results through the file `train_parallel[X]/log`.
-
- You will get the loss value as following:
- ```
- # grep "result: " train_parallel*/log
- train_parallel0/log:epoch: 1 step: 97, loss is 1.9060308
- train_parallel0/log:epcoh: 2 step: 97, loss is 1.6003821
- ...
- train_parallel1/log:epoch: 1 step: 97, loss is 1.7095519
- train_parallel1/log:epcoh: 2 step: 97, loss is 1.7133579
- ...
- ...
- ```
- > About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
-
-
- **Run vgg16, using imagenet2012 dataset**
-
- - Training using single device(1p)
- ```
- python train.py --device_target="GPU" --dataset="imagenet2012" --is_distributed=0 --data_path=$DATA_PATH > output.train.log 2>&1 &
- ```
-
- - Distribute Training
- ```
- # distributed training(8p)
- bash scripts/run_distribute_train_gpu.sh /path/ImageNet2012/train"
- ```
-
-
- ### Evaluation
-
- - Do eval as follows, need to specify dataset type as "cifar10" or "imagenet2012"
- ```
- # when using cifar10 dataset
- python eval.py --data_path=your_data_path --dataset="cifar10" --device_target="Ascend" --pre_trained=./*-70-781.ckpt > out.eval.log 2>&1 &
-
- # when using imagenet2012 dataset
- python eval.py --data_path=your_data_path --dataset="imagenet2012" --device_target="GPU" --pre_trained=./*-150-5004.ckpt > out.eval.log 2>&1 &
- ```
- - If the using dataset is
- The above python command will run in the background, you can view the results through the file `out.eval.log`.
-
- You will get the accuracy as following:
- ```
- # when using cifar10 dataset
- # grep "result: " out.eval.log
- result: {'acc': 0.92}
-
- # when using the imagenet2012 dataset
- after allreduce eval: top1_correct=36636, tot=50000, acc=73.27%
- after allreduce eval: top5_correct=45582, tot=50000, acc=91.16%
- ```
-
- ## Usage:
-
- ### Training
- ```
- usage: train.py [--device_target TARGET][--data_path DATA_PATH]
- [--dataset DATASET_TYPE][--is_distributed VALUE]
- [--device_id DEVICE_ID][--pre_trained PRE_TRAINED]
- [--ckpt_path CHECKPOINT_PATH][--ckpt_interval INTERVAL_STEP]
-
- parameters/options:
- --device_target the training backend type, Ascend or GPU, default is Ascend.
- --dataset the dataset type, cifar10 or imagenet2012.
- --is_distributed the way of traing, whether do distribute traing, value can be 0 or 1.
- --data_path the storage path of dataset
- --device_id the device which used to train model.
- --pre_trained the pretrained checkpoint file path.
- --ckpt_path the path to save checkpoint.
- --ckpt_interval the epoch interval for saving checkpoint.
-
- ```
-
- ### Evaluation
-
- ```
- usage: eval.py [--device_target TARGET][--data_path DATA_PATH]
- [--dataset DATASET_TYPE][--pre_trained PRE_TRAINED]
- [--device_id DEVICE_ID]
-
- parameters/options:
- --device_target the evaluation backend type, Ascend or GPU, default is Ascend.
- --dataset the dataset type, cifar10 or imagenet2012.
- --data_path the storage path of dataset.
- --device_id the device which used to evaluate model.
- --pre_trained the checkpoint file path used to evaluate model.
- ```
-
- ### Distribute Training
- - Train on Ascend.
-
- ```
- Usage: sh script/run_distribute_train.sh [RANK_TABLE_FILE] [DATA_PATH]
-
- parameters/options:
- RANK_TABLE_FILE HCCL configuration file path.
- DATA_PATH the storage path of dataset.
- ```
-
- - Train on GPU.
- ```
- Usage: bash run_distribute_train_gpu.sh [DATA_PATH]
-
- parameters/options:
- DATA_PATH the storage path of dataset.
- ```
|