You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Transformer evaluation script."""
  16. import os
  17. import numpy as np
  18. import mindspore.nn as nn
  19. import mindspore.common.dtype as mstype
  20. from mindspore.common.parameter import Parameter
  21. from mindspore.common.tensor import Tensor
  22. from mindspore.train.model import Model
  23. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  24. import mindspore.dataset.engine as de
  25. import mindspore.dataset.transforms.c_transforms as deC
  26. from mindspore import context
  27. from src.transformer_model import TransformerModel
  28. from src.eval_config import cfg, transformer_net_cfg
  29. def load_test_data(batch_size=1, data_file=None):
  30. """
  31. Load test dataset
  32. """
  33. ds = de.MindDataset(data_file,
  34. columns_list=["source_eos_ids", "source_eos_mask",
  35. "target_sos_ids", "target_sos_mask",
  36. "target_eos_ids", "target_eos_mask"],
  37. shuffle=False)
  38. type_cast_op = deC.TypeCast(mstype.int32)
  39. ds = ds.map(input_columns="source_eos_ids", operations=type_cast_op)
  40. ds = ds.map(input_columns="source_eos_mask", operations=type_cast_op)
  41. ds = ds.map(input_columns="target_sos_ids", operations=type_cast_op)
  42. ds = ds.map(input_columns="target_sos_mask", operations=type_cast_op)
  43. ds = ds.map(input_columns="target_eos_ids", operations=type_cast_op)
  44. ds = ds.map(input_columns="target_eos_mask", operations=type_cast_op)
  45. # apply batch operations
  46. ds = ds.batch(batch_size, drop_remainder=True)
  47. ds.channel_name = 'transformer'
  48. return ds
  49. class TransformerInferCell(nn.Cell):
  50. """
  51. Encapsulation class of transformer network infer.
  52. """
  53. def __init__(self, network):
  54. super(TransformerInferCell, self).__init__(auto_prefix=False)
  55. self.network = network
  56. def construct(self,
  57. source_ids,
  58. source_mask):
  59. predicted_ids = self.network(source_ids, source_mask)
  60. return predicted_ids
  61. def load_weights(model_path):
  62. """
  63. Load checkpoint as parameter dict, support both npz file and mindspore checkpoint file.
  64. """
  65. if model_path.endswith(".npz"):
  66. ms_ckpt = np.load(model_path)
  67. is_npz = True
  68. else:
  69. ms_ckpt = load_checkpoint(model_path)
  70. is_npz = False
  71. weights = {}
  72. for msname in ms_ckpt:
  73. infer_name = msname
  74. if "tfm_decoder" in msname:
  75. infer_name = "tfm_decoder.decoder." + infer_name
  76. if is_npz:
  77. weights[infer_name] = ms_ckpt[msname]
  78. else:
  79. weights[infer_name] = ms_ckpt[msname].data.asnumpy()
  80. weights["tfm_decoder.decoder.tfm_embedding_lookup.embedding_table"] = \
  81. weights["tfm_embedding_lookup.embedding_table"]
  82. parameter_dict = {}
  83. for name in weights:
  84. parameter_dict[name] = Parameter(Tensor(weights[name]), name=name)
  85. return parameter_dict
  86. def run_transformer_eval():
  87. """
  88. Transformer evaluation.
  89. """
  90. device_id = int(os.getenv('DEVICE_ID'))
  91. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False,
  92. device_id=device_id)
  93. dataset = load_test_data(batch_size=transformer_net_cfg.batch_size, data_file=cfg.data_file)
  94. tfm_model = TransformerModel(config=transformer_net_cfg, is_training=False, use_one_hot_embeddings=False)
  95. parameter_dict = load_weights(cfg.model_file)
  96. load_param_into_net(tfm_model, parameter_dict)
  97. tfm_infer = TransformerInferCell(tfm_model)
  98. model = Model(tfm_infer)
  99. predictions = []
  100. source_sents = []
  101. target_sents = []
  102. for batch in dataset.create_dict_iterator():
  103. source_sents.append(batch["source_eos_ids"])
  104. target_sents.append(batch["target_eos_ids"])
  105. source_ids = Tensor(batch["source_eos_ids"], mstype.int32)
  106. source_mask = Tensor(batch["source_eos_mask"], mstype.int32)
  107. predicted_ids = model.predict(source_ids, source_mask)
  108. predictions.append(predicted_ids.asnumpy())
  109. # decode and write to file
  110. f = open(cfg.output_file, 'w')
  111. for batch_out in predictions:
  112. for i in range(transformer_net_cfg.batch_size):
  113. if batch_out.ndim == 3:
  114. batch_out = batch_out[:, 0]
  115. token_ids = [str(x) for x in batch_out[i].tolist()]
  116. f.write(" ".join(token_ids) + "\n")
  117. f.close()
  118. if __name__ == "__main__":
  119. run_transformer_eval()