You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 7.4 kB

4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Train retinanet and get checkpoint files."""
  16. import os
  17. import argparse
  18. import ast
  19. import mindspore
  20. import mindspore.nn as nn
  21. from mindspore import context, Tensor
  22. from mindspore.communication.management import init, get_rank
  23. from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor, Callback
  24. from mindspore.train import Model
  25. from mindspore.context import ParallelMode
  26. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  27. from mindspore.common import set_seed
  28. from src.retinanet import retinanetWithLossCell, TrainingWrapper, retinanet50, resnet50
  29. from src.config import config
  30. from src.dataset import create_retinanet_dataset, create_mindrecord
  31. from src.lr_schedule import get_lr
  32. from src.init_params import init_net_param, filter_checkpoint_parameter
  33. set_seed(1)
  34. class Monitor(Callback):
  35. """
  36. Monitor loss and time.
  37. Args:
  38. lr_init (numpy array): train lr
  39. Returns:
  40. None
  41. Examples:
  42. >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
  43. """
  44. def __init__(self, lr_init=None):
  45. super(Monitor, self).__init__()
  46. self.lr_init = lr_init
  47. self.lr_init_len = len(lr_init)
  48. def step_end(self, run_context):
  49. cb_params = run_context.original_args()
  50. print("lr:[{:8.6f}]".format(self.lr_init[cb_params.cur_step_num-1]), flush=True)
  51. def main():
  52. parser = argparse.ArgumentParser(description="retinanet training")
  53. parser.add_argument("--only_create_dataset", type=ast.literal_eval, default=False,
  54. help="If set it true, only create Mindrecord, default is False.")
  55. parser.add_argument("--distribute", type=ast.literal_eval, default=False,
  56. help="Run distribute, default is False.")
  57. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  58. parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
  59. parser.add_argument("--lr", type=float, default=0.1, help="Learning rate, default is 0.1.")
  60. parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
  61. parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
  62. parser.add_argument("--epoch_size", type=int, default=500, help="Epoch size, default is 500.")
  63. parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
  64. parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.")
  65. parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
  66. parser.add_argument("--save_checkpoint_epochs", type=int, default=1, help="Save checkpoint epochs, default is 1.")
  67. parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
  68. parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
  69. help="Filter weight parameters, default is False.")
  70. parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend"),
  71. help="run platform, only support Ascend.")
  72. args_opt = parser.parse_args()
  73. if args_opt.run_platform == "Ascend":
  74. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  75. if args_opt.distribute:
  76. if os.getenv("DEVICE_ID", "not_set").isdigit():
  77. context.set_context(device_id=int(os.getenv("DEVICE_ID")))
  78. init()
  79. device_num = args_opt.device_num
  80. rank = get_rank()
  81. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
  82. device_num=device_num)
  83. else:
  84. rank = 0
  85. device_num = 1
  86. context.set_context(device_id=args_opt.device_id)
  87. else:
  88. raise ValueError("Unsupported platform.")
  89. mindrecord_file = create_mindrecord(args_opt.dataset, "retinanet.mindrecord", True)
  90. if not args_opt.only_create_dataset:
  91. loss_scale = float(args_opt.loss_scale)
  92. # When create MindDataset, using the fitst mindrecord file, such as retinanet.mindrecord0.
  93. dataset = create_retinanet_dataset(mindrecord_file, repeat_num=1,
  94. batch_size=args_opt.batch_size, device_num=device_num, rank=rank)
  95. dataset_size = dataset.get_dataset_size()
  96. print("Create dataset done!")
  97. backbone = resnet50(config.num_classes)
  98. retinanet = retinanet50(backbone, config)
  99. net = retinanetWithLossCell(retinanet, config)
  100. net.to_float(mindspore.float16)
  101. init_net_param(net)
  102. if args_opt.pre_trained:
  103. if args_opt.pre_trained_epoch_size <= 0:
  104. raise KeyError("pre_trained_epoch_size must be greater than 0.")
  105. param_dict = load_checkpoint(args_opt.pre_trained)
  106. if args_opt.filter_weight:
  107. filter_checkpoint_parameter(param_dict)
  108. load_param_into_net(net, param_dict)
  109. lr = Tensor(get_lr(global_step=config.global_step,
  110. lr_init=config.lr_init, lr_end=config.lr_end_rate * args_opt.lr, lr_max=args_opt.lr,
  111. warmup_epochs1=config.warmup_epochs1, warmup_epochs2=config.warmup_epochs2,
  112. warmup_epochs3=config.warmup_epochs3, warmup_epochs4=config.warmup_epochs4,
  113. warmup_epochs5=config.warmup_epochs5, total_epochs=args_opt.epoch_size,
  114. steps_per_epoch=dataset_size))
  115. opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
  116. config.momentum, config.weight_decay, loss_scale)
  117. net = TrainingWrapper(net, opt, loss_scale)
  118. model = Model(net)
  119. print("Start train retinanet, the first epoch will be slower because of the graph compilation.")
  120. cb = [TimeMonitor(), LossMonitor()]
  121. cb += [Monitor(lr_init=lr.asnumpy())]
  122. config_ck = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs,
  123. keep_checkpoint_max=config.keep_checkpoint_max)
  124. ckpt_cb = ModelCheckpoint(prefix="retinanet", directory=config.save_checkpoint_path, config=config_ck)
  125. if args_opt.distribute:
  126. if rank == 0:
  127. cb += [ckpt_cb]
  128. model.train(args_opt.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
  129. else:
  130. cb += [ckpt_cb]
  131. model.train(args_opt.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
  132. if __name__ == '__main__':
  133. main()