You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_rmsprop.py 8.4 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.common.parameter import Parameter
  21. from mindspore.common.initializer import initializer
  22. from mindspore.ops import operations as P
  23. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  24. class NetCenteredRMSProp(nn.Cell):
  25. def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom):
  26. super(NetCenteredRMSProp, self).__init__()
  27. self.rms_opt = P.ApplyCenteredRMSProp()
  28. self.lr = lr
  29. self.decay = decay
  30. self.momentum = momentum
  31. self.epsilon = epsilon
  32. self.var = var
  33. self.g = g
  34. self.mg = mg
  35. self.rms = rms
  36. self.mom = mom
  37. def construct(self):
  38. return self.rms_opt(self.var, self.mg, self.rms, self.mom, self.g, self.lr, self.decay, self.momentum,
  39. self.epsilon)
  40. class NetRMSProp(nn.Cell):
  41. def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom):
  42. super(NetRMSProp, self).__init__()
  43. self.lr = lr
  44. self.decay = decay
  45. self.momentum = momentum
  46. self.epsilon = epsilon
  47. self.var = var
  48. self.g = g
  49. self.mg = mg
  50. self.rms = rms
  51. self.mom = mom
  52. self.rms_opt = P.ApplyRMSProp()
  53. def construct(self):
  54. return self.rms_opt(self.var, self.rms, self.mom, self.lr, self.g, self.decay, self.momentum, self.epsilon)
  55. def rmsprop_numpy(variable, gradients, mean_square, moment,
  56. learning_rate, decay, momentum, epsilon):
  57. mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
  58. moment = momentum * moment + learning_rate / np.sqrt(mean_square + epsilon) * gradients
  59. variable = variable - moment
  60. return variable, gradients, mean_square, moment
  61. def rmspropcented_numpy(variable, gradients, mean_gradients, mean_square, moment,
  62. learning_rate, decay, momentum, epsilon):
  63. mean_gradients = mean_gradients * decay + (1.0 - decay) * gradients
  64. mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
  65. moment = momentum * moment + learning_rate / np.sqrt(
  66. mean_square - mean_gradients * mean_gradients + epsilon) * gradients
  67. variable = variable - moment
  68. return variable, gradients, mean_gradients, mean_square, moment
  69. @pytest.mark.level0
  70. @pytest.mark.platform_x86_gpu_training
  71. @pytest.mark.env_onecard
  72. def test_rmsprop():
  73. learning_rate, decay, momentum, epsilon, centered = [0.5, 0.8, 0.9, 1e-3, True]
  74. variable_np = np.array([1.0, 2.0], dtype=np.float32)
  75. gradients_np = np.array([0.1, 0.2], dtype=np.float32)
  76. mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
  77. mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
  78. moment_np = np.array([0.0, 0.0], dtype=np.float32)
  79. variable = Tensor(variable_np)
  80. gradients = Tensor(gradients_np)
  81. mean_gradients = Tensor(mean_gradients_np)
  82. mean_square = Tensor(mean_square_np)
  83. moment = Tensor(moment_np)
  84. variable_ms = Parameter(initializer(variable, variable.shape), name='var')
  85. gradients_ms = Parameter(initializer(gradients, gradients.shape), name='grad')
  86. mean_gradients_ms = Parameter(initializer(mean_gradients, mean_gradients.shape), name='mg')
  87. mean_square_ms = Parameter(initializer(mean_square, mean_square.shape), name='msr')
  88. moment_ms = Parameter(initializer(moment, moment.shape), name='mom')
  89. if centered:
  90. variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \
  91. rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
  92. learning_rate, decay, momentum, epsilon)
  93. net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
  94. mean_square_ms, moment_ms)
  95. _ = net()
  96. else:
  97. variable_np, gradients_np, mean_square_np, moment_np = \
  98. rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
  99. learning_rate, decay, momentum, epsilon)
  100. net = NetRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
  101. mean_square_ms, moment_ms)
  102. _ = net()
  103. error = np.ones(shape=variable_np.shape) * 10e-6
  104. diff = variable_ms.asnumpy() - variable_np
  105. assert np.all(diff < error)
  106. error = np.ones(shape=gradients_np.shape) * 10e-6
  107. diff = gradients_ms.asnumpy() - gradients_np
  108. assert np.all(diff < error)
  109. error = np.ones(shape=mean_gradients_np.shape) * 10e-6
  110. diff = mean_gradients_ms.asnumpy() - mean_gradients_np
  111. assert np.all(diff < error)
  112. error = np.ones(shape=mean_square_np.shape) * 10e-6
  113. diff = mean_square_ms.asnumpy() - mean_square_np
  114. assert np.all(diff < error)
  115. error = np.ones(shape=moment_np.shape) * 10e-6
  116. diff = moment_ms.asnumpy() - moment_np
  117. assert np.all(diff < error)
  118. @pytest.mark.level0
  119. @pytest.mark.platform_x86_gpu_training
  120. @pytest.mark.env_onecard
  121. def test_rmspropcenter():
  122. learning_rate, decay, momentum, epsilon, centered = [0.1, 0.3, 0.9, 1.0, False]
  123. variable_np = np.array([1.0, 2.0], dtype=np.float32)
  124. gradients_np = np.array([0.1, 0.2], dtype=np.float32)
  125. mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
  126. mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
  127. moment_np = np.array([0.0, 0.0], dtype=np.float32)
  128. variable = Tensor(variable_np)
  129. gradients = Tensor(gradients_np)
  130. mean_gradients = Tensor(mean_gradients_np)
  131. mean_square = Tensor(mean_square_np)
  132. moment = Tensor(moment_np)
  133. variable_ms = Parameter(initializer(variable, variable.shape), name='var')
  134. gradients_ms = Parameter(initializer(gradients, gradients.shape), name='grad')
  135. mean_gradients_ms = Parameter(initializer(mean_gradients, mean_gradients.shape), name='mg')
  136. mean_square_ms = Parameter(initializer(mean_square, mean_square.shape), name='msr')
  137. moment_ms = Parameter(initializer(moment, moment.shape), name='mom')
  138. if centered:
  139. variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \
  140. rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
  141. learning_rate, decay, momentum, epsilon)
  142. net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
  143. mean_square_ms, moment_ms)
  144. _ = net()
  145. else:
  146. variable_np, gradients_np, mean_square_np, moment_np = \
  147. rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
  148. learning_rate, decay, momentum, epsilon)
  149. net = NetRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
  150. mean_square_ms, moment_ms)
  151. _ = net()
  152. error = np.ones(shape=variable_np.shape) * 10e-6
  153. diff = variable_ms.asnumpy() - variable_np
  154. assert np.all(diff < error)
  155. error = np.ones(shape=gradients_np.shape) * 10e-6
  156. diff = gradients_ms.asnumpy() - gradients_np
  157. assert np.all(diff < error)
  158. error = np.ones(shape=mean_gradients_np.shape) * 10e-6
  159. diff = mean_gradients_ms.asnumpy() - mean_gradients_np
  160. assert np.all(diff < error)
  161. error = np.ones(shape=mean_square_np.shape) * 10e-6
  162. diff = mean_square_ms.asnumpy() - mean_square_np
  163. assert np.all(diff < error)
  164. error = np.ones(shape=moment_np.shape) * 10e-6
  165. diff = moment_ms.asnumpy() - moment_np
  166. assert np.all(diff < error)