|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import cv2
- from PIL import Image
- import mindspore.dataset.vision.c_transforms as C
- from mindspore import log as logger
-
- def test_eager_resize():
- img = cv2.imread("../data/dataset/apple.jpg")
- logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
-
- img = C.Resize(size=(32, 32))(img)
- logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
-
- assert img.shape == (32, 32, 3)
-
- def test_eager_rescale():
- img = cv2.imread("../data/dataset/apple.jpg")
- logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
- pixel = img[0][0][0]
-
- rescale_factor = 0.5
- img = C.Rescale(rescale=rescale_factor, shift=0)(img)
- logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
- pixel_rescaled = img[0][0][0]
-
- assert pixel*rescale_factor == pixel_rescaled
-
- def test_eager_normalize():
- img = Image.open("../data/dataset/apple.jpg").convert("RGB")
- logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.size))
- pixel = img.getpixel((0, 0))[0]
-
- mean_vec = [100, 100, 100]
- std_vec = [2, 2, 2]
- img = C.Normalize(mean=mean_vec, std=std_vec)(img)
- logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
- pixel_normalized = img[0][0][0]
-
- assert (pixel - mean_vec[0]) / std_vec[0] == pixel_normalized
-
- def test_eager_HWC2CHW():
- img = cv2.imread("../data/dataset/apple.jpg")
- logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
- channel = img.shape
-
- img = C.HWC2CHW()(img)
- logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
- channel_swaped = img.shape
-
- assert channel == (channel_swaped[1], channel_swaped[2], channel_swaped[0])
-
- def test_eager_pad():
- img = Image.open("../data/dataset/apple.jpg").convert("RGB")
- logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.size))
-
- img = C.Resize(size=(32, 32))(img)
- logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.size))
- size = img.shape
-
- pad = 4
- img = C.Pad(padding=pad)(img)
- logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.size))
- size_padded = img.shape
-
- assert size_padded == (size[0] + 2 * pad, size[1] + 2 * pad, size[2])
-
- def test_eager_exceptions():
- try:
- img = cv2.imread("../data/dataset/apple.jpg")
- img = C.Resize(size=(-32, 32))(img)
- assert False
- except ValueError as e:
- assert "not within the required interval" in str(e)
-
- try:
- img = "../data/dataset/apple.jpg"
- img = C.Pad(padding=4)(img)
- assert False
- except TypeError as e:
- assert "Input should be NumPy or PIL image" in str(e)
-
-
- if __name__ == '__main__':
- test_eager_resize()
- test_eager_rescale()
- test_eager_normalize()
- test_eager_HWC2CHW()
- test_eager_pad()
- test_eager_exceptions()
-
|