You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataset.py 2.7 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. create train or eval dataset.
  17. """
  18. import os
  19. import mindspore.common.dtype as mstype
  20. import mindspore.dataset.engine as de
  21. import mindspore.dataset.transforms.vision.c_transforms as C
  22. import mindspore.dataset.transforms.c_transforms as C2
  23. from mindspore.communication.management import get_rank, get_group_size
  24. from config import config
  25. def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"):
  26. """
  27. create a train or eval dataset
  28. Args:
  29. dataset_path(string): the path of dataset.
  30. do_train(bool): whether dataset is used for train or eval.
  31. repeat_num(int): the repeat times of dataset. Default: 1
  32. batch_size(int): the batch size of dataset. Default: 32
  33. target(str): the device target. Default: Ascend
  34. Returns:
  35. dataset
  36. """
  37. if target == "Ascend":
  38. device_num = int(os.getenv("DEVICE_NUM"))
  39. rank_id = int(os.getenv("RANK_ID"))
  40. else:
  41. rank_id = get_rank()
  42. device_num = get_group_size()
  43. if device_num == 1:
  44. ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True)
  45. else:
  46. ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True,
  47. num_shards=device_num, shard_id=rank_id)
  48. # define map operations
  49. trans = []
  50. if do_train:
  51. trans += [
  52. C.RandomCrop((32, 32), (4, 4, 4, 4)),
  53. C.RandomHorizontalFlip(prob=0.5)
  54. ]
  55. trans += [
  56. C.Resize((config.image_height, config.image_width)),
  57. C.Rescale(1.0 / 255.0, 0.0),
  58. C.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
  59. C.HWC2CHW()
  60. ]
  61. type_cast_op = C2.TypeCast(mstype.int32)
  62. ds = ds.map(input_columns="label", num_parallel_workers=8, operations=type_cast_op)
  63. ds = ds.map(input_columns="image", num_parallel_workers=8, operations=trans)
  64. # apply batch operations
  65. ds = ds.batch(batch_size, drop_remainder=True)
  66. # apply dataset repeat operation
  67. ds = ds.repeat(repeat_num)
  68. return ds