You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 9.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """task distill script"""
  16. import os
  17. import argparse
  18. from mindspore import context
  19. from mindspore.train.model import Model
  20. from mindspore.nn.optim import AdamWeightDecay
  21. from mindspore import set_seed
  22. from src.dataset import create_dataset
  23. from src.utils import StepCallBack, ModelSaveCkpt, EvalCallBack, BertLearningRate
  24. from src.config import train_cfg, eval_cfg, teacher_net_cfg, student_net_cfg, task_cfg
  25. from src.cell_wrapper import BertNetworkWithLoss, BertTrainCell
  26. WEIGHTS_NAME = 'eval_model.ckpt'
  27. EVAL_DATA_NAME = 'eval.tf_record'
  28. TRAIN_DATA_NAME = 'train.tf_record'
  29. def parse_args():
  30. """
  31. parse args
  32. """
  33. parser = argparse.ArgumentParser(description='ternarybert task distill')
  34. parser.add_argument('--device_target', type=str, default='GPU', choices=['Ascend', 'GPU'],
  35. help='Device where the code will be implemented. (Default: GPU)')
  36. parser.add_argument('--do_eval', type=str, default='true', choices=['true', 'false'],
  37. help='Do eval task during training or not. (Default: true)')
  38. parser.add_argument('--epoch_size', type=int, default=3, help='Epoch size for train phase. (Default: 3)')
  39. parser.add_argument('--device_id', type=int, default=0, help='Device id. (Default: 0)')
  40. parser.add_argument('--do_shuffle', type=str, default='true', choices=['true', 'false'],
  41. help='Enable shuffle for train dataset. (Default: true)')
  42. parser.add_argument('--enable_data_sink', type=str, default='true', choices=['true', 'false'],
  43. help='Enable data sink. (Default: true)')
  44. parser.add_argument('--save_ckpt_step', type=int, default=50,
  45. help='If do_eval is false, the checkpoint will be saved every save_ckpt_step. (Default: 50)')
  46. parser.add_argument('--eval_ckpt_step', type=int, default=50,
  47. help='If do_eval is true, the evaluation will be ran every eval_ckpt_step. (Default: 50)')
  48. parser.add_argument('--max_ckpt_num', type=int, default=10,
  49. help='The number of checkpoints will not be larger than max_ckpt_num. (Default: 10)')
  50. parser.add_argument('--data_sink_steps', type=int, default=1, help='Sink steps for each epoch. (Default: 1)')
  51. parser.add_argument('--teacher_model_dir', type=str, default='', help='The checkpoint directory of teacher model.')
  52. parser.add_argument('--student_model_dir', type=str, default='', help='The checkpoint directory of student model.')
  53. parser.add_argument('--data_dir', type=str, default='', help='Data directory.')
  54. parser.add_argument('--output_dir', type=str, default='./', help='The output checkpoint directory.')
  55. parser.add_argument('--task_name', type=str, default='sts-b', choices=['sts-b', 'qnli', 'mnli'],
  56. help='The name of the task to train. (Default: sts-b)')
  57. parser.add_argument('--dataset_type', type=str, default='tfrecord', choices=['tfrecord', 'mindrecord'],
  58. help='The name of the task to train. (Default: tfrecord)')
  59. parser.add_argument('--seed', type=int, default=1, help='The random seed')
  60. parser.add_argument('--train_batch_size', type=int, default=16, help='Batch size for training')
  61. parser.add_argument('--eval_batch_size', type=int, default=32, help='Eval Batch size in callback')
  62. return parser.parse_args()
  63. def run_task_distill(args_opt):
  64. """
  65. run task distill
  66. """
  67. task = task_cfg[args_opt.task_name]
  68. teacher_net_cfg.seq_length = task.seq_length
  69. student_net_cfg.seq_length = task.seq_length
  70. train_cfg.batch_size = args_opt.train_batch_size
  71. eval_cfg.batch_size = args_opt.eval_batch_size
  72. teacher_ckpt = os.path.join(args_opt.teacher_model_dir, args_opt.task_name, WEIGHTS_NAME)
  73. student_ckpt = os.path.join(args_opt.student_model_dir, args_opt.task_name, WEIGHTS_NAME)
  74. train_data_dir = os.path.join(args_opt.data_dir, args_opt.task_name, TRAIN_DATA_NAME)
  75. eval_data_dir = os.path.join(args_opt.data_dir, args_opt.task_name, EVAL_DATA_NAME)
  76. save_ckpt_dir = os.path.join(args_opt.output_dir, args_opt.task_name)
  77. context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args.device_id)
  78. rank = 0
  79. device_num = 1
  80. train_dataset = create_dataset(batch_size=train_cfg.batch_size,
  81. device_num=device_num,
  82. rank=rank,
  83. do_shuffle=args_opt.do_shuffle,
  84. data_dir=train_data_dir,
  85. data_type=args_opt.dataset_type,
  86. seq_length=task.seq_length,
  87. task_type=task.task_type,
  88. drop_remainder=True)
  89. dataset_size = train_dataset.get_dataset_size()
  90. print('train dataset size:', dataset_size)
  91. eval_dataset = create_dataset(batch_size=eval_cfg.batch_size,
  92. device_num=device_num,
  93. rank=rank,
  94. do_shuffle=args_opt.do_shuffle,
  95. data_dir=eval_data_dir,
  96. data_type=args_opt.dataset_type,
  97. seq_length=task.seq_length,
  98. task_type=task.task_type,
  99. drop_remainder=False)
  100. print('eval dataset size:', eval_dataset.get_dataset_size())
  101. if args_opt.enable_data_sink == 'true':
  102. repeat_count = args_opt.epoch_size * dataset_size // args_opt.data_sink_steps
  103. else:
  104. repeat_count = args_opt.epoch_size
  105. netwithloss = BertNetworkWithLoss(teacher_config=teacher_net_cfg, teacher_ckpt=teacher_ckpt,
  106. student_config=student_net_cfg, student_ckpt=student_ckpt,
  107. is_training=True, task_type=task.task_type, num_labels=task.num_labels)
  108. params = netwithloss.trainable_params()
  109. optimizer_cfg = train_cfg.optimizer_cfg
  110. lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
  111. end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
  112. warmup_steps=int(dataset_size * args_opt.epoch_size *
  113. optimizer_cfg.AdamWeightDecay.warmup_ratio),
  114. decay_steps=int(dataset_size * args_opt.epoch_size),
  115. power=optimizer_cfg.AdamWeightDecay.power)
  116. decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
  117. other_params = list(filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params))
  118. group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
  119. {'params': other_params, 'weight_decay': 0.0},
  120. {'order_params': params}]
  121. optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
  122. netwithgrads = BertTrainCell(netwithloss, optimizer=optimizer)
  123. if args_opt.do_eval == 'true':
  124. eval_dataset = list(eval_dataset.create_dict_iterator())
  125. callback = [EvalCallBack(network=netwithloss.bert,
  126. dataset=eval_dataset,
  127. eval_ckpt_step=args_opt.eval_ckpt_step,
  128. save_ckpt_dir=save_ckpt_dir,
  129. embedding_bits=student_net_cfg.embedding_bits,
  130. weight_bits=student_net_cfg.weight_bits,
  131. clip_value=student_net_cfg.weight_clip_value,
  132. metrics=task.metrics)]
  133. else:
  134. callback = [StepCallBack(),
  135. ModelSaveCkpt(network=netwithloss.bert,
  136. save_ckpt_step=args_opt.save_ckpt_step,
  137. max_ckpt_num=args_opt.max_ckpt_num,
  138. output_dir=save_ckpt_dir,
  139. embedding_bits=student_net_cfg.embedding_bits,
  140. weight_bits=student_net_cfg.weight_bits,
  141. clip_value=student_net_cfg.weight_clip_value)]
  142. model = Model(netwithgrads)
  143. model.train(repeat_count, train_dataset, callbacks=callback,
  144. dataset_sink_mode=(args_opt.enable_data_sink == 'true'),
  145. sink_size=args_opt.data_sink_steps)
  146. if __name__ == '__main__':
  147. args = parse_args()
  148. set_seed(args.seed)
  149. run_task_distill(args)