|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Face attribute eval."""
- import os
- import argparse
- import numpy as np
-
- from mindspore import context
- from mindspore import Tensor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.common import dtype as mstype
-
- from src.dataset_eval import data_generator_eval
- from src.config import config
- from src.FaceAttribute.resnet18 import get_resnet18
-
- devid = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=devid)
-
-
- def softmax(x, axis=0):
- return np.exp(x) / np.sum(np.exp(x), axis=axis)
-
-
- def main(args):
- network = get_resnet18(args)
- ckpt_path = args.model_path
- if os.path.isfile(ckpt_path):
- param_dict = load_checkpoint(ckpt_path)
- param_dict_new = {}
- for key, values in param_dict.items():
- if key.startswith('moments.'):
- continue
- elif key.startswith('network.'):
- param_dict_new[key[8:]] = values
- else:
- param_dict_new[key] = values
- load_param_into_net(network, param_dict_new)
- print('-----------------------load model success-----------------------')
- else:
- print('-----------------------load model failed-----------------------')
-
- network.set_train(False)
-
- de_dataloader, steps_per_epoch, _ = data_generator_eval(args)
-
- total_data_num_age = 0
- total_data_num_gen = 0
- total_data_num_mask = 0
- age_num = 0
- gen_num = 0
- mask_num = 0
- gen_tp_num = 0
- mask_tp_num = 0
- gen_fp_num = 0
- mask_fp_num = 0
- gen_fn_num = 0
- mask_fn_num = 0
- for step_i, (data, gt_classes) in enumerate(de_dataloader):
-
- print('evaluating {}/{} ...'.format(step_i + 1, steps_per_epoch))
-
- data_tensor = Tensor(data, dtype=mstype.float32)
- fea = network(data_tensor)
-
- gt_age, gt_gen, gt_mask = gt_classes[0]
-
- age_result, gen_result, mask_result = fea
-
- age_result_np = age_result.asnumpy()
- gen_result_np = gen_result.asnumpy()
- mask_result_np = mask_result.asnumpy()
-
- age_prob = softmax(age_result_np[0].astype(np.float32)).tolist()
- gen_prob = softmax(gen_result_np[0].astype(np.float32)).tolist()
- mask_prob = softmax(mask_result_np[0].astype(np.float32)).tolist()
-
- age = age_prob.index(max(age_prob))
- gen = gen_prob.index(max(gen_prob))
- mask = mask_prob.index(max(mask_prob))
-
- if gt_age == age:
- age_num += 1
- if gt_gen == gen:
- gen_num += 1
- if gt_mask == mask:
- mask_num += 1
-
- if gt_gen == 1 and gen == 1:
- gen_tp_num += 1
- if gt_gen == 0 and gen == 1:
- gen_fp_num += 1
- if gt_gen == 1 and gen == 0:
- gen_fn_num += 1
-
- if gt_mask == 1 and mask == 1:
- mask_tp_num += 1
- if gt_mask == 0 and mask == 1:
- mask_fp_num += 1
- if gt_mask == 1 and mask == 0:
- mask_fn_num += 1
-
- if gt_age != -1:
- total_data_num_age += 1
- if gt_gen != -1:
- total_data_num_gen += 1
- if gt_mask != -1:
- total_data_num_mask += 1
-
- age_accuracy = float(age_num) / float(total_data_num_age)
-
- gen_precision = float(gen_tp_num) / (float(gen_tp_num) + float(gen_fp_num))
- gen_recall = float(gen_tp_num) / (float(gen_tp_num) + float(gen_fn_num))
- gen_accuracy = float(gen_num) / float(total_data_num_gen)
- gen_f1 = 2. * gen_precision * gen_recall / (gen_precision + gen_recall)
-
- mask_precision = float(mask_tp_num) / (float(mask_tp_num) + float(mask_fp_num))
- mask_recall = float(mask_tp_num) / (float(mask_tp_num) + float(mask_fn_num))
- mask_accuracy = float(mask_num) / float(total_data_num_mask)
- mask_f1 = 2. * mask_precision * mask_recall / (mask_precision + mask_recall)
-
- print('model: ', ckpt_path)
- print('total age num: ', total_data_num_age)
- print('total gen num: ', total_data_num_gen)
- print('total mask num: ', total_data_num_mask)
- print('age accuracy: ', age_accuracy)
- print('gen accuracy: ', gen_accuracy)
- print('mask accuracy: ', mask_accuracy)
- print('gen precision: ', gen_precision)
- print('gen recall: ', gen_recall)
- print('gen f1: ', gen_f1)
- print('mask precision: ', mask_precision)
- print('mask recall: ', mask_recall)
- print('mask f1: ', mask_f1)
-
- model_name = os.path.basename(ckpt_path).split('.')[0]
- model_dir = os.path.dirname(ckpt_path)
- result_txt = os.path.join(model_dir, model_name + '.txt')
- if os.path.exists(result_txt):
- os.remove(result_txt)
- with open(result_txt, 'a') as ft:
- ft.write('model: {}\n'.format(ckpt_path))
- ft.write('total age num: {}\n'.format(total_data_num_age))
- ft.write('total gen num: {}\n'.format(total_data_num_gen))
- ft.write('total mask num: {}\n'.format(total_data_num_mask))
- ft.write('age accuracy: {}\n'.format(age_accuracy))
- ft.write('gen accuracy: {}\n'.format(gen_accuracy))
- ft.write('mask accuracy: {}\n'.format(mask_accuracy))
- ft.write('gen precision: {}\n'.format(gen_precision))
- ft.write('gen recall: {}\n'.format(gen_recall))
- ft.write('gen f1: {}\n'.format(gen_f1))
- ft.write('mask precision: {}\n'.format(mask_precision))
- ft.write('mask recall: {}\n'.format(mask_recall))
- ft.write('mask f1: {}\n'.format(mask_f1))
-
- def parse_args():
- """parse_args"""
- parser = argparse.ArgumentParser(description='face attributes eval')
- parser.add_argument('--model_path', type=str, default='', help='pretrained model to load')
- parser.add_argument('--mindrecord_path', type=str, default='', help='dataset path, e.g. /home/data.mindrecord')
-
- args_opt = parser.parse_args()
- return args_opt
-
-
- if __name__ == '__main__':
- args_1 = parse_args()
-
- args_1.dst_h = config.dst_h
- args_1.dst_w = config.dst_w
- args_1.attri_num = config.attri_num
- args_1.classes = config.classes
- args_1.flat_dim = config.flat_dim
- args_1.fc_dim = config.fc_dim
- args_1.workers = config.workers
-
- main(args_1)
|