You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 5.3 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train_criteo."""
  16. import os
  17. import json
  18. import argparse
  19. from mindspore import context, Tensor, ParameterTuple
  20. from mindspore.context import ParallelMode
  21. from mindspore.communication.management import init, get_rank, get_group_size
  22. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
  23. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  24. from mindspore.nn.optim import Adam
  25. from mindspore.nn import TrainOneStepCell
  26. from mindspore.train import Model
  27. from src.deepspeech2 import DeepSpeechModel, NetWithLossClass
  28. from src.lr_generator import get_lr
  29. from src.config import train_config
  30. from src.dataset import create_dataset
  31. parser = argparse.ArgumentParser(description='DeepSpeech2 training')
  32. parser.add_argument('--pre_trained_model_path', type=str, default='', help='Pretrained checkpoint path')
  33. parser.add_argument('--is_distributed', action="store_true", default=False, help='Distributed training')
  34. parser.add_argument('--bidirectional', action="store_false", default=True, help='Use bidirectional RNN')
  35. parser.add_argument('--device_target', type=str, default="GPU", choices=("GPU", "CPU"),
  36. help='Device target, support GPU and CPU, Default: GPU')
  37. args = parser.parse_args()
  38. if __name__ == '__main__':
  39. rank_id = 0
  40. group_size = 1
  41. config = train_config
  42. data_sink = (args.device_target == "GPU")
  43. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, save_graphs=False)
  44. if args.is_distributed:
  45. init('nccl')
  46. rank_id = get_rank()
  47. group_size = get_group_size()
  48. context.reset_auto_parallel_context()
  49. context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
  50. gradients_mean=True)
  51. with open(config.DataConfig.labels_path) as label_file:
  52. labels = json.load(label_file)
  53. ds_train = create_dataset(audio_conf=config.DataConfig.SpectConfig,
  54. manifest_filepath=config.DataConfig.train_manifest,
  55. labels=labels, normalize=True, train_mode=True,
  56. batch_size=config.DataConfig.batch_size, rank=rank_id, group_size=group_size)
  57. steps_size = ds_train.get_dataset_size()
  58. lr = get_lr(lr_init=config.OptimConfig.learning_rate, total_epochs=config.TrainingConfig.epochs,
  59. steps_per_epoch=steps_size)
  60. lr = Tensor(lr)
  61. deepspeech_net = DeepSpeechModel(batch_size=config.DataConfig.batch_size,
  62. rnn_hidden_size=config.ModelConfig.hidden_size,
  63. nb_layers=config.ModelConfig.hidden_layers,
  64. labels=labels,
  65. rnn_type=config.ModelConfig.rnn_type,
  66. audio_conf=config.DataConfig.SpectConfig,
  67. bidirectional=True,
  68. device_target=args.device_target)
  69. loss_net = NetWithLossClass(deepspeech_net)
  70. weights = ParameterTuple(deepspeech_net.trainable_params())
  71. optimizer = Adam(weights, learning_rate=config.OptimConfig.learning_rate, eps=config.OptimConfig.epsilon,
  72. loss_scale=config.OptimConfig.loss_scale)
  73. train_net = TrainOneStepCell(loss_net, optimizer)
  74. train_net.set_train(True)
  75. if args.pre_trained_model_path != '':
  76. param_dict = load_checkpoint(args.pre_trained_model_path)
  77. load_param_into_net(train_net, param_dict)
  78. print('Successfully loading the pre-trained model')
  79. model = Model(train_net)
  80. callback_list = [LossMonitor()]
  81. if args.is_distributed:
  82. config.CheckpointConfig.ckpt_file_name_prefix = config.CheckpointConfig.ckpt_file_name_prefix + str(get_rank())
  83. config.CheckpointConfig.ckpt_path = os.path.join(config.CheckpointConfig.ckpt_path,
  84. 'ckpt_' + str(get_rank()) + '/')
  85. config_ck = CheckpointConfig(save_checkpoint_steps=1,
  86. keep_checkpoint_max=config.CheckpointConfig.keep_checkpoint_max)
  87. ckpt_cb = ModelCheckpoint(prefix=config.CheckpointConfig.ckpt_file_name_prefix,
  88. directory=config.CheckpointConfig.ckpt_path, config=config_ck)
  89. callback_list.append(ckpt_cb)
  90. model.train(config.TrainingConfig.epochs, ds_train, callbacks=callback_list, dataset_sink_mode=data_sink)