You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.6 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. export checkpoint file to mindir model
  17. """
  18. import json
  19. import argparse
  20. import numpy as np
  21. from mindspore import context, Tensor
  22. from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
  23. from src.deepspeech2 import DeepSpeechModel
  24. from src.config import train_config
  25. parser = argparse.ArgumentParser(description='Export DeepSpeech model to Mindir')
  26. parser.add_argument('--pre_trained_model_path', type=str, default='', help=' existed checkpoint path')
  27. args = parser.parse_args()
  28. if __name__ == '__main__':
  29. config = train_config
  30. context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
  31. with open(config.DataConfig.labels_path) as label_file:
  32. labels = json.load(label_file)
  33. deepspeech_net = DeepSpeechModel(batch_size=1,
  34. rnn_hidden_size=config.ModelConfig.hidden_size,
  35. nb_layers=config.ModelConfig.hidden_layers,
  36. labels=labels,
  37. rnn_type=config.ModelConfig.rnn_type,
  38. audio_conf=config.DataConfig.SpectConfig,
  39. bidirectional=True)
  40. param_dict = load_checkpoint(args.pre_trained_model_path)
  41. load_param_into_net(deepspeech_net, param_dict)
  42. print('Successfully loading the pre-trained model')
  43. # 3500 is the max length in evaluation dataset(LibriSpeech). This is consistent with that in dataset.py
  44. # The length is fixed to this value because Mindspore does not support dynamic shape currently
  45. input_np = np.random.uniform(0.0, 1.0, size=[1, 1, 161, 3500]).astype(np.float32)
  46. length = np.array([15], dtype=np.int32)
  47. export(deepspeech_net, Tensor(input_np), Tensor(length), file_name="deepspeech2.mindir", file_format='MINDIR')