You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_nn_pad.py 2.1 kB

5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test nn pad """
  16. from mindspore import Tensor
  17. from mindspore.ops import operations as P
  18. import mindspore.nn as nn
  19. from mindspore.ops.composite import GradOperation
  20. from mindspore.common.api import ms_function
  21. import numpy as np
  22. import mindspore.context as context
  23. class Net(nn.Cell):
  24. def __init__(self, raw_paddings, mode):
  25. super(Net, self).__init__()
  26. self.pad = nn.Pad(raw_paddings, mode=mode)
  27. @ms_function
  28. def construct(self, x):
  29. return self.pad(x)
  30. class Grad(nn.Cell):
  31. def __init__(self, network):
  32. super(Grad, self).__init__()
  33. self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
  34. self.network = network
  35. @ms_function
  36. def construct(self, x, grads):
  37. return self.grad(self.network)(x, grads)
  38. def test_pad_train():
  39. mode = 'CONSTANT'
  40. x = np.random.random(size=(2, 3)).astype(np.float32)
  41. raw_paddings = ((1, 1), (2, 2))
  42. grads = np.random.random(size=(4, 7)).astype(np.float32)
  43. grad = Grad(Net(raw_paddings, mode))
  44. output = grad(Tensor(x), Tensor(grads))
  45. print("=================output====================")
  46. print(output)
  47. def test_pad_infer():
  48. mode = 'CONSTANT'
  49. x = np.random.random(size=(2, 3)).astype(np.float32)
  50. raw_paddings = ((1, 1), (2, 2))
  51. net = Net(raw_paddings, mode)
  52. output = net(Tensor(x))
  53. print("=================output====================")
  54. print(output)