|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- This is the test module for mindrecord
- """
- import collections
- import json
- import os
- import re
- import string
-
- import mindspore.dataset.transforms.vision.c_transforms as vision
- import numpy as np
- import pytest
- from mindspore.dataset.transforms.vision import Inter
- from mindspore import log as logger
-
- import mindspore.dataset as ds
- from mindspore.mindrecord import FileWriter
-
- FILES_NUM = 4
- CV_FILE_NAME = "../data/mindrecord/imagenet.mindrecord"
- CV1_FILE_NAME = "../data/mindrecord/imagenet1.mindrecord"
- CV2_FILE_NAME = "../data/mindrecord/imagenet2.mindrecord"
- CV_DIR_NAME = "../data/mindrecord/testImageNetData"
- NLP_FILE_NAME = "../data/mindrecord/aclImdb.mindrecord"
- NLP_FILE_POS = "../data/mindrecord/testAclImdbData/pos"
- NLP_FILE_VOCAB= "../data/mindrecord/testAclImdbData/vocab.txt"
-
- @pytest.fixture
- def add_and_remove_cv_file():
- """add/remove cv file"""
- paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0'))
- for x in range(FILES_NUM)]
- for x in paths:
- os.remove("{}".format(x)) if os.path.exists("{}".format(x)) else None
- os.remove("{}.db".format(x)) if os.path.exists("{}.db".format(x)) else None
- writer = FileWriter(CV_FILE_NAME, FILES_NUM)
- data = get_data(CV_DIR_NAME)
- cv_schema_json = {"id": {"type": "int32"},
- "file_name": {"type": "string"},
- "label": {"type": "int32"},
- "data": {"type": "bytes"}}
- writer.add_schema(cv_schema_json, "img_schema")
- writer.add_index(["file_name", "label"])
- writer.write_raw_data(data)
- writer.commit()
- yield "yield_cv_data"
- for x in paths:
- os.remove("{}".format(x))
- os.remove("{}.db".format(x))
-
- @pytest.fixture
- def add_and_remove_nlp_file():
- """add/remove nlp file"""
- paths = ["{}{}".format(NLP_FILE_NAME, str(x).rjust(1, '0'))
- for x in range(FILES_NUM)]
- for x in paths:
- if os.path.exists("{}".format(x)):
- os.remove("{}".format(x))
- if os.path.exists("{}.db".format(x)):
- os.remove("{}.db".format(x))
- writer = FileWriter(NLP_FILE_NAME, FILES_NUM)
- data = [x for x in get_nlp_data(NLP_FILE_POS, NLP_FILE_VOCAB, 10)]
- nlp_schema_json = {"id": {"type": "string"}, "label": {"type": "int32"},
- "rating": {"type": "float32"},
- "input_ids": {"type": "int64",
- "shape": [-1]},
- "input_mask": {"type": "int64",
- "shape": [1, -1]},
- "segment_ids": {"type": "int64",
- "shape": [2,-1]}
- }
- writer.set_header_size(1 << 14)
- writer.set_page_size(1 << 15)
- writer.add_schema(nlp_schema_json, "nlp_schema")
- writer.add_index(["id", "rating"])
- writer.write_raw_data(data)
- writer.commit()
- yield "yield_nlp_data"
- for x in paths:
- os.remove("{}".format(x))
- os.remove("{}.db".format(x))
-
- def test_cv_minddataset_writer_tutorial():
- """tutorial for cv dataset writer."""
- paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0'))
- for x in range(FILES_NUM)]
- for x in paths:
- os.remove("{}".format(x)) if os.path.exists("{}".format(x)) else None
- os.remove("{}.db".format(x)) if os.path.exists("{}.db".format(x)) else None
- writer = FileWriter(CV_FILE_NAME, FILES_NUM)
- data = get_data(CV_DIR_NAME)
- cv_schema_json = {"file_name": {"type": "string"}, "label": {"type": "int32"},
- "data": {"type": "bytes"}}
- writer.add_schema(cv_schema_json, "img_schema")
- writer.add_index(["file_name", "label"])
- writer.write_raw_data(data)
- writer.commit()
- for x in paths:
- os.remove("{}".format(x))
- os.remove("{}.db".format(x))
-
- def test_cv_minddataset_partition_tutorial(add_and_remove_cv_file):
- """tutorial for cv minddataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
-
- def partitions(num_shards):
- for partition_id in range(num_shards):
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- num_shards=num_shards, shard_id=partition_id)
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- partition : {} ------------------------".format(partition_id))
- logger.info("-------------- item[label]: {} -----------------------".format(item["label"]))
- num_iter += 1
- return num_iter
-
- assert partitions(4) == 3
- assert partitions(5) == 2
- assert partitions(9) == 2
-
-
- def test_cv_minddataset_dataset_size(add_and_remove_cv_file):
- """tutorial for cv minddataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
- assert data_set.get_dataset_size() == 10
- repeat_num = 2
- data_set = data_set.repeat(repeat_num)
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- get dataset size {} -----------------".format(num_iter))
- logger.info("-------------- item[label]: {} ---------------------".format(item["label"]))
- logger.info("-------------- item[data]: {} ----------------------".format(item["data"]))
- num_iter += 1
- assert num_iter == 20
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- num_shards=4, shard_id=3)
- assert data_set.get_dataset_size() == 3
-
-
- def test_cv_minddataset_repeat_reshuffle(add_and_remove_cv_file):
- """tutorial for cv minddataset."""
- columns_list = ["data", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
- decode_op = vision.Decode()
- data_set = data_set.map(input_columns=["data"], operations=decode_op, num_parallel_workers=2)
- resize_op = vision.Resize((32, 32), interpolation=Inter.LINEAR)
- data_set = data_set.map(input_columns="data", operations=resize_op, num_parallel_workers=2)
- data_set = data_set.batch(2)
- data_set = data_set.repeat(2)
- num_iter = 0
- labels = []
- for item in data_set.create_dict_iterator():
- logger.info("-------------- get dataset size {} -----------------".format(num_iter))
- logger.info("-------------- item[label]: {} ---------------------".format(item["label"]))
- logger.info("-------------- item[data]: {} ----------------------".format(item["data"]))
- num_iter += 1
- labels.append(item["label"])
- assert num_iter == 10
- logger.info("repeat shuffle: {}".format(labels))
- assert len(labels) == 10
- assert labels[0:5] == labels[0:5]
- assert labels[0:5] != labels[5:5]
-
-
- def test_cv_minddataset_batch_size_larger_than_records(add_and_remove_cv_file):
- """tutorial for cv minddataset."""
- columns_list = ["data", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
- decode_op = vision.Decode()
- data_set = data_set.map(input_columns=["data"], operations=decode_op, num_parallel_workers=2)
- resize_op = vision.Resize((32, 32), interpolation=Inter.LINEAR)
- data_set = data_set.map(input_columns="data", operations=resize_op, num_parallel_workers=2)
- data_set = data_set.batch(32, drop_remainder=True)
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- get dataset size {} -----------------".format(num_iter))
- logger.info("-------------- item[label]: {} ---------------------".format(item["label"]))
- logger.info("-------------- item[data]: {} ----------------------".format(item["data"]))
- num_iter += 1
- assert num_iter == 0
-
-
- def test_cv_minddataset_issue_888(add_and_remove_cv_file):
- """issue 888 test."""
- columns_list = ["data", "label"]
- num_readers = 2
- data = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, shuffle=False, num_shards=5, shard_id=1)
- data = data.shuffle(2)
- data = data.repeat(9)
- num_iter = 0
- for item in data.create_dict_iterator():
- num_iter += 1
- assert num_iter == 18
-
-
- def test_cv_minddataset_blockreader_tutorial(add_and_remove_cv_file):
- """tutorial for cv minddataset."""
- columns_list = ["data", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
- block_reader=True)
- assert data_set.get_dataset_size() == 10
- repeat_num = 2
- data_set = data_set.repeat(repeat_num)
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- block reader repeat tow {} -----------------".format(num_iter))
- logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
- logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
- num_iter += 1
- assert num_iter == 20
-
- def test_cv_minddataset_blockreader_some_field_not_in_index_tutorial(add_and_remove_cv_file):
- """tutorial for cv minddataset."""
- columns_list = ["id", "data", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, shuffle=False,
- block_reader=True)
- assert data_set.get_dataset_size() == 10
- repeat_num = 2
- data_set = data_set.repeat(repeat_num)
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- block reader repeat tow {} -----------------".format(num_iter))
- logger.info("-------------- item[id]: {} ----------------------------".format(item["id"]))
- logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
- logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
- num_iter += 1
- assert num_iter == 20
-
-
- def test_cv_minddataset_reader_file_list(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset([CV_FILE_NAME + str(x) for x in range(FILES_NUM)], columns_list, num_readers)
- assert data_set.get_dataset_size() == 10
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
- logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 10
-
- def test_cv_minddataset_reader_one_partition(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset([CV_FILE_NAME + "0"], columns_list, num_readers)
- assert data_set.get_dataset_size() < 10
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
- logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter < 10
-
- def test_cv_minddataset_reader_two_dataset(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- if os.path.exists(CV1_FILE_NAME):
- os.remove(CV1_FILE_NAME)
- if os.path.exists("{}.db".format(CV1_FILE_NAME)):
- os.remove("{}.db".format(CV1_FILE_NAME))
- if os.path.exists(CV2_FILE_NAME):
- os.remove(CV2_FILE_NAME)
- if os.path.exists("{}.db".format(CV2_FILE_NAME)):
- os.remove("{}.db".format(CV2_FILE_NAME))
- writer = FileWriter(CV1_FILE_NAME, 1)
- data = get_data(CV_DIR_NAME)
- cv_schema_json = {"id": {"type": "int32"},
- "file_name": {"type": "string"},
- "label": {"type": "int32"},
- "data": {"type": "bytes"}}
- writer.add_schema(cv_schema_json, "CV1_schema")
- writer.add_index(["file_name", "label"])
- writer.write_raw_data(data)
- writer.commit()
-
- writer = FileWriter(CV2_FILE_NAME, 1)
- data = get_data(CV_DIR_NAME)
- cv_schema_json = {"id": {"type": "int32"},
- "file_name": {"type": "string"},
- "label": {"type": "int32"},
- "data": {"type": "bytes"}}
- writer.add_schema(cv_schema_json, "CV2_schema")
- writer.add_index(["file_name", "label"])
- writer.write_raw_data(data)
- writer.commit()
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset([CV_FILE_NAME + str(x) for x in range(FILES_NUM)] + [CV1_FILE_NAME, CV2_FILE_NAME], columns_list, num_readers)
- assert data_set.get_dataset_size() == 30
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
- logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 30
- if os.path.exists(CV1_FILE_NAME):
- os.remove(CV1_FILE_NAME)
- if os.path.exists("{}.db".format(CV1_FILE_NAME)):
- os.remove("{}.db".format(CV1_FILE_NAME))
- if os.path.exists(CV2_FILE_NAME):
- os.remove(CV2_FILE_NAME)
- if os.path.exists("{}.db".format(CV2_FILE_NAME)):
- os.remove("{}.db".format(CV2_FILE_NAME))
-
- def test_cv_minddataset_reader_two_dataset_partition(add_and_remove_cv_file):
- paths = ["{}{}".format(CV1_FILE_NAME, str(x).rjust(1, '0'))
- for x in range(FILES_NUM)]
- for x in paths:
- os.remove("{}".format(x)) if os.path.exists("{}".format(x)) else None
- os.remove("{}.db".format(x)) if os.path.exists("{}.db".format(x)) else None
- writer = FileWriter(CV1_FILE_NAME, FILES_NUM)
- data = get_data(CV_DIR_NAME)
- cv_schema_json = {"id": {"type": "int32"},
- "file_name": {"type": "string"},
- "label": {"type": "int32"},
- "data": {"type": "bytes"}}
- writer.add_schema(cv_schema_json, "CV1_schema")
- writer.add_index(["file_name", "label"])
- writer.write_raw_data(data)
- writer.commit()
-
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset([CV_FILE_NAME + str(x) for x in range(2)] + [CV1_FILE_NAME + str(x) for x in range(2, 4)], columns_list, num_readers)
- assert data_set.get_dataset_size() < 20
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
- logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter < 20
- for x in paths:
- os.remove("{}".format(x))
- os.remove("{}.db".format(x))
-
-
- def test_cv_minddataset_reader_basic_tutorial(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
- assert data_set.get_dataset_size() == 10
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
- logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 10
-
- def test_nlp_minddataset_reader_basic_tutorial(add_and_remove_nlp_file):
- """tutorial for nlp minderdataset."""
- num_readers = 4
- data_set = ds.MindDataset(NLP_FILE_NAME + "0", None, num_readers)
- assert data_set.get_dataset_size() == 10
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- num_iter: {} ------------------------".format(num_iter))
- logger.info("-------------- item[id]: {} ------------------------".format(item["id"]))
- logger.info("-------------- item[rating]: {} --------------------".format(item["rating"]))
- logger.info("-------------- item[input_ids]: {}, shape: {} -----------------".format(
- item["input_ids"], item["input_ids"].shape))
- logger.info("-------------- item[input_mask]: {}, shape: {} -----------------".format(
- item["input_mask"], item["input_mask"].shape))
- logger.info("-------------- item[segment_ids]: {}, shape: {} -----------------".format(
- item["segment_ids"], item["segment_ids"].shape))
- assert item["input_ids"].shape == (50,)
- assert item["input_mask"].shape == (1, 50)
- assert item["segment_ids"].shape == (2, 25)
- num_iter += 1
- assert num_iter == 10
-
-
- def test_cv_minddataset_reader_basic_tutorial_5_epoch(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
- assert data_set.get_dataset_size() == 10
- for epoch in range(5):
- num_iter = 0
- for data in data_set:
- logger.info("data is {}".format(data))
- num_iter += 1
- assert num_iter == 10
-
- data_set.reset()
-
-
- def test_cv_minddataset_reader_basic_tutorial_5_epoch_with_batch(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
-
- resize_height = 32
- resize_width = 32
-
- # define map operations
- decode_op = vision.Decode()
- resize_op = vision.Resize((resize_height, resize_width), ds.transforms.vision.Inter.LINEAR)
-
- data_set = data_set.map(input_columns=["data"], operations=decode_op, num_parallel_workers=4)
- data_set = data_set.map(input_columns=["data"], operations=resize_op, num_parallel_workers=4)
-
- data_set = data_set.batch(2)
- assert data_set.get_dataset_size() == 5
- for epoch in range(5):
- num_iter = 0
- for data in data_set:
- logger.info("data is {}".format(data))
- num_iter += 1
- assert num_iter == 5
-
- data_set.reset()
-
-
- def test_cv_minddataset_reader_no_columns(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- data_set = ds.MindDataset(CV_FILE_NAME + "0")
- assert data_set.get_dataset_size() == 10
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- cv reader basic: {} ------------------------".format(num_iter))
- logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
- logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
- logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
- logger.info("-------------- item[label]: {} ----------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 10
-
-
- def test_cv_minddataset_reader_repeat_tutorial(add_and_remove_cv_file):
- """tutorial for cv minderdataset."""
- columns_list = ["data", "file_name", "label"]
- num_readers = 4
- data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
- repeat_num = 2
- data_set = data_set.repeat(repeat_num)
- num_iter = 0
- for item in data_set.create_dict_iterator():
- logger.info("-------------- repeat two test {} ------------------------".format(num_iter))
- logger.info("-------------- len(item[data]): {} -----------------------".format(len(item["data"])))
- logger.info("-------------- item[data]: {} ----------------------------".format(item["data"]))
- logger.info("-------------- item[file_name]: {} -----------------------".format(item["file_name"]))
- logger.info("-------------- item[label]: {} ---------------------------".format(item["label"]))
- num_iter += 1
- assert num_iter == 20
-
-
- def get_data(dir_name):
- """
- usage: get data from imagenet dataset
- params:
- dir_name: directory containing folder images and annotation information
-
- """
- if not os.path.isdir(dir_name):
- raise IOError("Directory {} not exists".format(dir_name))
- img_dir = os.path.join(dir_name, "images")
- ann_file = os.path.join(dir_name, "annotation.txt")
- with open(ann_file, "r") as file_reader:
- lines = file_reader.readlines()
-
- data_list = []
- for i, line in enumerate(lines):
- try:
- filename, label = line.split(",")
- label = label.strip("\n")
- with open(os.path.join(img_dir, filename), "rb") as file_reader:
- img = file_reader.read()
- data_json = {"id": i,
- "file_name": filename,
- "data": img,
- "label": int(label)}
- data_list.append(data_json)
- except FileNotFoundError:
- continue
- return data_list
-
- def get_multi_bytes_data(file_name, bytes_num=3):
- """
- Return raw data of multi-bytes dataset.
-
- Args:
- file_name (str): String of multi-bytes dataset's path.
- bytes_num (int): Number of bytes fields.
-
- Returns:
- List
- """
- if not os.path.exists(file_name):
- raise IOError("map file {} not exists".format(file_name))
- dir_name = os.path.dirname(file_name)
- with open(file_name, "r") as file_reader:
- lines = file_reader.readlines()
- data_list = []
- row_num = 0
- for line in lines:
- try:
- img10_path = line.strip('\n').split(" ")
- img5 = []
- for path in img10_path[:bytes_num]:
- with open(os.path.join(dir_name, path), "rb") as file_reader:
- img5 += [file_reader.read()]
- data_json = {"image_{}".format(i): img5[i]
- for i in range(len(img5))}
- data_json.update({"id": row_num})
- row_num += 1
- data_list.append(data_json)
- except FileNotFoundError:
- continue
- return data_list
-
- def get_mkv_data(dir_name):
- """
- Return raw data of Vehicle_and_Person dataset.
-
- Args:
- dir_name (str): String of Vehicle_and_Person dataset's path.
-
- Returns:
- List
- """
- if not os.path.isdir(dir_name):
- raise IOError("Directory {} not exists".format(dir_name))
- img_dir = os.path.join(dir_name, "Image")
- label_dir = os.path.join(dir_name, "prelabel")
-
- data_list = []
- file_list = os.listdir(label_dir)
-
- index = 1
- for item in file_list:
- if os.path.splitext(item)[1] == '.json':
- file_path = os.path.join(label_dir, item)
-
- image_name = ''.join([os.path.splitext(item)[0], ".jpg"])
- image_path = os.path.join(img_dir, image_name)
-
- with open(file_path, "r") as load_f:
- load_dict = json.load(load_f)
-
- if os.path.exists(image_path):
- with open(image_path, "rb") as file_reader:
- img = file_reader.read()
- data_json = {"file_name": image_name,
- "prelabel": str(load_dict),
- "data": img,
- "id": index}
- data_list.append(data_json)
- index += 1
- logger.info('{} images are missing'.format(len(file_list)-len(data_list)))
- return data_list
-
- def get_nlp_data(dir_name, vocab_file, num):
- """
- Return raw data of aclImdb dataset.
-
- Args:
- dir_name (str): String of aclImdb dataset's path.
- vocab_file (str): String of dictionary's path.
- num (int): Number of sample.
-
- Returns:
- List
- """
- if not os.path.isdir(dir_name):
- raise IOError("Directory {} not exists".format(dir_name))
- for root, dirs, files in os.walk(dir_name):
- for index, file_name_extension in enumerate(files):
- if index < num:
- file_path = os.path.join(root, file_name_extension)
- file_name, _ = file_name_extension.split('.', 1)
- id_, rating = file_name.split('_', 1)
- with open(file_path, 'r') as f:
- raw_content = f.read()
-
- dictionary = load_vocab(vocab_file)
- vectors = [dictionary.get('[CLS]')]
- vectors += [dictionary.get(i) if i in dictionary
- else dictionary.get('[UNK]')
- for i in re.findall(r"[\w']+|[{}]"
- .format(string.punctuation),
- raw_content)]
- vectors += [dictionary.get('[SEP]')]
- input_, mask, segment = inputs(vectors)
- input_ids = np.reshape(np.array(input_), [-1])
- input_mask = np.reshape(np.array(mask), [1, -1])
- segment_ids = np.reshape(np.array(segment), [2, -1])
- data = {
- "label": 1,
- "id": id_,
- "rating": float(rating),
- "input_ids": input_ids,
- "input_mask": input_mask,
- "segment_ids": segment_ids
- }
- yield data
-
- def convert_to_uni(text):
- if isinstance(text, str):
- return text
- if isinstance(text, bytes):
- return text.decode('utf-8', 'ignore')
- raise Exception("The type %s does not convert!" % type(text))
-
- def load_vocab(vocab_file):
- """load vocabulary to translate statement."""
- vocab = collections.OrderedDict()
- vocab.setdefault('blank', 2)
- index = 0
- with open(vocab_file) as reader:
- while True:
- tmp = reader.readline()
- if not tmp:
- break
- token = convert_to_uni(tmp)
- token = token.strip()
- vocab[token] = index
- index += 1
- return vocab
-
- def inputs(vectors, maxlen=50):
- length = len(vectors)
- if length > maxlen:
- return vectors[0:maxlen], [1]*maxlen, [0]*maxlen
- input_ = vectors+[0]*(maxlen-length)
- mask = [1]*length + [0]*(maxlen-length)
- segment = [0]*maxlen
- return input_, mask, segment
-
- def test_write_with_multi_bytes_and_array_and_read_by_MindDataset():
- mindrecord_file_name = "test.mindrecord"
- data = [{"file_name": "001.jpg", "label": 4,
- "image1": bytes("image1 bytes abc", encoding='UTF-8'),
- "image2": bytes("image1 bytes def", encoding='UTF-8'),
- "source_sos_ids": np.array([1, 2, 3, 4, 5], dtype=np.int64),
- "source_sos_mask": np.array([6, 7, 8, 9, 10, 11, 12], dtype=np.int64),
- "image3": bytes("image1 bytes ghi", encoding='UTF-8'),
- "image4": bytes("image1 bytes jkl", encoding='UTF-8'),
- "image5": bytes("image1 bytes mno", encoding='UTF-8'),
- "target_sos_ids": np.array([28, 29, 30, 31, 32], dtype=np.int64),
- "target_sos_mask": np.array([33, 34, 35, 36, 37, 38], dtype=np.int64),
- "target_eos_ids": np.array([39, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
- "target_eos_mask": np.array([48, 49, 50, 51], dtype=np.int64)},
- {"file_name": "002.jpg", "label": 5,
- "image1": bytes("image2 bytes abc", encoding='UTF-8'),
- "image2": bytes("image2 bytes def", encoding='UTF-8'),
- "image3": bytes("image2 bytes ghi", encoding='UTF-8'),
- "image4": bytes("image2 bytes jkl", encoding='UTF-8'),
- "image5": bytes("image2 bytes mno", encoding='UTF-8'),
- "source_sos_ids": np.array([11, 2, 3, 4, 5], dtype=np.int64),
- "source_sos_mask": np.array([16, 7, 8, 9, 10, 11, 12], dtype=np.int64),
- "target_sos_ids": np.array([128, 29, 30, 31, 32], dtype=np.int64),
- "target_sos_mask": np.array([133, 34, 35, 36, 37, 38], dtype=np.int64),
- "target_eos_ids": np.array([139, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
- "target_eos_mask": np.array([148, 49, 50, 51], dtype=np.int64)},
- {"file_name": "003.jpg", "label": 6,
- "source_sos_ids": np.array([21, 2, 3, 4, 5], dtype=np.int64),
- "source_sos_mask": np.array([26, 7, 8, 9, 10, 11, 12], dtype=np.int64),
- "target_sos_ids": np.array([228, 29, 30, 31, 32], dtype=np.int64),
- "target_sos_mask": np.array([233, 34, 35, 36, 37, 38], dtype=np.int64),
- "target_eos_ids": np.array([239, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
- "image1": bytes("image3 bytes abc", encoding='UTF-8'),
- "image2": bytes("image3 bytes def", encoding='UTF-8'),
- "image3": bytes("image3 bytes ghi", encoding='UTF-8'),
- "image4": bytes("image3 bytes jkl", encoding='UTF-8'),
- "image5": bytes("image3 bytes mno", encoding='UTF-8'),
- "target_eos_mask": np.array([248, 49, 50, 51], dtype=np.int64)},
- {"file_name": "004.jpg", "label": 7,
- "source_sos_ids": np.array([31, 2, 3, 4, 5], dtype=np.int64),
- "source_sos_mask": np.array([36, 7, 8, 9, 10, 11, 12], dtype=np.int64),
- "image1": bytes("image4 bytes abc", encoding='UTF-8'),
- "image2": bytes("image4 bytes def", encoding='UTF-8'),
- "image3": bytes("image4 bytes ghi", encoding='UTF-8'),
- "image4": bytes("image4 bytes jkl", encoding='UTF-8'),
- "image5": bytes("image4 bytes mno", encoding='UTF-8'),
- "target_sos_ids": np.array([328, 29, 30, 31, 32], dtype=np.int64),
- "target_sos_mask": np.array([333, 34, 35, 36, 37, 38], dtype=np.int64),
- "target_eos_ids": np.array([339, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
- "target_eos_mask": np.array([348, 49, 50, 51], dtype=np.int64)},
- {"file_name": "005.jpg", "label": 8,
- "source_sos_ids": np.array([41, 2, 3, 4, 5], dtype=np.int64),
- "source_sos_mask": np.array([46, 7, 8, 9, 10, 11, 12], dtype=np.int64),
- "target_sos_ids": np.array([428, 29, 30, 31, 32], dtype=np.int64),
- "target_sos_mask": np.array([433, 34, 35, 36, 37, 38], dtype=np.int64),
- "image1": bytes("image5 bytes abc", encoding='UTF-8'),
- "image2": bytes("image5 bytes def", encoding='UTF-8'),
- "image3": bytes("image5 bytes ghi", encoding='UTF-8'),
- "image4": bytes("image5 bytes jkl", encoding='UTF-8'),
- "image5": bytes("image5 bytes mno", encoding='UTF-8'),
- "target_eos_ids": np.array([439, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
- "target_eos_mask": np.array([448, 49, 50, 51], dtype=np.int64)},
- {"file_name": "006.jpg", "label": 9,
- "source_sos_ids": np.array([51, 2, 3, 4, 5], dtype=np.int64),
- "source_sos_mask": np.array([56, 7, 8, 9, 10, 11, 12], dtype=np.int64),
- "target_sos_ids": np.array([528, 29, 30, 31, 32], dtype=np.int64),
- "image1": bytes("image6 bytes abc", encoding='UTF-8'),
- "image2": bytes("image6 bytes def", encoding='UTF-8'),
- "image3": bytes("image6 bytes ghi", encoding='UTF-8'),
- "image4": bytes("image6 bytes jkl", encoding='UTF-8'),
- "image5": bytes("image6 bytes mno", encoding='UTF-8'),
- "target_sos_mask": np.array([533, 34, 35, 36, 37, 38], dtype=np.int64),
- "target_eos_ids": np.array([539, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
- "target_eos_mask": np.array([548, 49, 50, 51], dtype=np.int64)}
- ]
-
- writer = FileWriter(mindrecord_file_name)
- schema = {"file_name": {"type": "string"},
- "image1": {"type": "bytes"},
- "image2": {"type": "bytes"},
- "source_sos_ids": {"type": "int64", "shape": [-1]},
- "source_sos_mask": {"type": "int64", "shape": [-1]},
- "image3": {"type": "bytes"},
- "image4": {"type": "bytes"},
- "image5": {"type": "bytes"},
- "target_sos_ids": {"type": "int64", "shape": [-1]},
- "target_sos_mask": {"type": "int64", "shape": [-1]},
- "target_eos_ids": {"type": "int64", "shape": [-1]},
- "target_eos_mask": {"type": "int64", "shape": [-1]},
- "label": {"type": "int32"}}
- writer.add_schema(schema, "data is so cool")
- writer.write_raw_data(data)
- writer.commit()
-
- # change data value to list
- data_value_to_list = []
- for item in data:
- new_data = {}
- new_data['file_name'] = np.asarray(list(bytes(item["file_name"], encoding='utf-8')), dtype=np.uint8)
- new_data['label'] = np.asarray(list([item["label"]]), dtype=np.int32)
- new_data['image1'] = np.asarray(list(item["image1"]), dtype=np.uint8)
- new_data['image2'] = np.asarray(list(item["image2"]), dtype=np.uint8)
- new_data['image3'] = np.asarray(list(item["image3"]), dtype=np.uint8)
- new_data['image4'] = np.asarray(list(item["image4"]), dtype=np.uint8)
- new_data['image5'] = np.asarray(list(item["image5"]), dtype=np.uint8)
- new_data['source_sos_ids'] = item["source_sos_ids"]
- new_data['source_sos_mask'] = item["source_sos_mask"]
- new_data['target_sos_ids'] = item["target_sos_ids"]
- new_data['target_sos_mask'] = item["target_sos_mask"]
- new_data['target_eos_ids'] = item["target_eos_ids"]
- new_data['target_eos_mask'] = item["target_eos_mask"]
- data_value_to_list.append(new_data)
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 13
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["source_sos_ids", "source_sos_mask", "target_sos_ids"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 3
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data[num_iter][field]).all()
- else:
- assert item[field] == data[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 1
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["image2", "source_sos_mask", "image3", "target_sos_ids"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 4
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 3
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["target_sos_ids", "image4", "source_sos_ids"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 3
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 3
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["target_sos_ids", "image5", "image4", "image3", "source_sos_ids"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 5
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 1
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["target_eos_mask", "image5", "image2", "source_sos_mask", "label"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 5
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["label", "target_eos_mask", "image1", "target_eos_ids", "source_sos_mask",
- "image2", "image4", "image3", "source_sos_ids", "image5", "file_name"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 11
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- os.remove("{}".format(mindrecord_file_name))
- os.remove("{}.db".format(mindrecord_file_name))
-
- def test_write_with_multi_bytes_and_MindDataset():
- mindrecord_file_name = "test.mindrecord"
- data = [{"file_name": "001.jpg", "label": 43,
- "image1": bytes("image1 bytes abc", encoding='UTF-8'),
- "image2": bytes("image1 bytes def", encoding='UTF-8'),
- "image3": bytes("image1 bytes ghi", encoding='UTF-8'),
- "image4": bytes("image1 bytes jkl", encoding='UTF-8'),
- "image5": bytes("image1 bytes mno", encoding='UTF-8')},
- {"file_name": "002.jpg", "label": 91,
- "image1": bytes("image2 bytes abc", encoding='UTF-8'),
- "image2": bytes("image2 bytes def", encoding='UTF-8'),
- "image3": bytes("image2 bytes ghi", encoding='UTF-8'),
- "image4": bytes("image2 bytes jkl", encoding='UTF-8'),
- "image5": bytes("image2 bytes mno", encoding='UTF-8')},
- {"file_name": "003.jpg", "label": 61,
- "image1": bytes("image3 bytes abc", encoding='UTF-8'),
- "image2": bytes("image3 bytes def", encoding='UTF-8'),
- "image3": bytes("image3 bytes ghi", encoding='UTF-8'),
- "image4": bytes("image3 bytes jkl", encoding='UTF-8'),
- "image5": bytes("image3 bytes mno", encoding='UTF-8')},
- {"file_name": "004.jpg", "label": 29,
- "image1": bytes("image4 bytes abc", encoding='UTF-8'),
- "image2": bytes("image4 bytes def", encoding='UTF-8'),
- "image3": bytes("image4 bytes ghi", encoding='UTF-8'),
- "image4": bytes("image4 bytes jkl", encoding='UTF-8'),
- "image5": bytes("image4 bytes mno", encoding='UTF-8')},
- {"file_name": "005.jpg", "label": 78,
- "image1": bytes("image5 bytes abc", encoding='UTF-8'),
- "image2": bytes("image5 bytes def", encoding='UTF-8'),
- "image3": bytes("image5 bytes ghi", encoding='UTF-8'),
- "image4": bytes("image5 bytes jkl", encoding='UTF-8'),
- "image5": bytes("image5 bytes mno", encoding='UTF-8')},
- {"file_name": "006.jpg", "label": 37,
- "image1": bytes("image6 bytes abc", encoding='UTF-8'),
- "image2": bytes("image6 bytes def", encoding='UTF-8'),
- "image3": bytes("image6 bytes ghi", encoding='UTF-8'),
- "image4": bytes("image6 bytes jkl", encoding='UTF-8'),
- "image5": bytes("image6 bytes mno", encoding='UTF-8')}
- ]
- writer = FileWriter(mindrecord_file_name)
- schema = {"file_name": {"type": "string"},
- "image1": {"type": "bytes"},
- "image2": {"type": "bytes"},
- "image3": {"type": "bytes"},
- "label": {"type": "int32"},
- "image4": {"type": "bytes"},
- "image5": {"type": "bytes"}}
- writer.add_schema(schema, "data is so cool")
- writer.write_raw_data(data)
- writer.commit()
-
- # change data value to list
- data_value_to_list = []
- for item in data:
- new_data = {}
- new_data['file_name'] = np.asarray(list(bytes(item["file_name"], encoding='utf-8')), dtype=np.uint8)
- new_data['label'] = np.asarray(list([item["label"]]), dtype=np.int32)
- new_data['image1'] = np.asarray(list(item["image1"]), dtype=np.uint8)
- new_data['image2'] = np.asarray(list(item["image2"]), dtype=np.uint8)
- new_data['image3'] = np.asarray(list(item["image3"]), dtype=np.uint8)
- new_data['image4'] = np.asarray(list(item["image4"]), dtype=np.uint8)
- new_data['image5'] = np.asarray(list(item["image5"]), dtype=np.uint8)
- data_value_to_list.append(new_data)
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 7
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["image1", "image2", "image5"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 3
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["image2", "image4"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 2
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["image5", "image2"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 2
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["image5", "image2", "label"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 3
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["image4", "image5", "image2", "image3", "file_name"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 5
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- os.remove("{}".format(mindrecord_file_name))
- os.remove("{}.db".format(mindrecord_file_name))
-
- def test_write_with_multi_array_and_MindDataset():
- mindrecord_file_name = "test.mindrecord"
- data = [{"source_sos_ids": np.array([1, 2, 3, 4, 5], dtype=np.int64),
- "source_sos_mask": np.array([6, 7, 8, 9, 10, 11, 12], dtype=np.int64),
- "source_eos_ids": np.array([13, 14, 15, 16, 17, 18], dtype=np.int64),
- "source_eos_mask": np.array([19, 20, 21, 22, 23, 24, 25, 26, 27], dtype=np.int64),
- "target_sos_ids": np.array([28, 29, 30, 31, 32], dtype=np.int64),
- "target_sos_mask": np.array([33, 34, 35, 36, 37, 38], dtype=np.int64),
- "target_eos_ids": np.array([39, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
- "target_eos_mask": np.array([48, 49, 50, 51], dtype=np.int64)},
- {"source_sos_ids": np.array([11, 2, 3, 4, 5], dtype=np.int64),
- "source_sos_mask": np.array([16, 7, 8, 9, 10, 11, 12], dtype=np.int64),
- "source_eos_ids": np.array([113, 14, 15, 16, 17, 18], dtype=np.int64),
- "source_eos_mask": np.array([119, 20, 21, 22, 23, 24, 25, 26, 27], dtype=np.int64),
- "target_sos_ids": np.array([128, 29, 30, 31, 32], dtype=np.int64),
- "target_sos_mask": np.array([133, 34, 35, 36, 37, 38], dtype=np.int64),
- "target_eos_ids": np.array([139, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
- "target_eos_mask": np.array([148, 49, 50, 51], dtype=np.int64)},
- {"source_sos_ids": np.array([21, 2, 3, 4, 5], dtype=np.int64),
- "source_sos_mask": np.array([26, 7, 8, 9, 10, 11, 12], dtype=np.int64),
- "source_eos_ids": np.array([213, 14, 15, 16, 17, 18], dtype=np.int64),
- "source_eos_mask": np.array([219, 20, 21, 22, 23, 24, 25, 26, 27], dtype=np.int64),
- "target_sos_ids": np.array([228, 29, 30, 31, 32], dtype=np.int64),
- "target_sos_mask": np.array([233, 34, 35, 36, 37, 38], dtype=np.int64),
- "target_eos_ids": np.array([239, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
- "target_eos_mask": np.array([248, 49, 50, 51], dtype=np.int64)},
- {"source_sos_ids": np.array([31, 2, 3, 4, 5], dtype=np.int64),
- "source_sos_mask": np.array([36, 7, 8, 9, 10, 11, 12], dtype=np.int64),
- "source_eos_ids": np.array([313, 14, 15, 16, 17, 18], dtype=np.int64),
- "source_eos_mask": np.array([319, 20, 21, 22, 23, 24, 25, 26, 27], dtype=np.int64),
- "target_sos_ids": np.array([328, 29, 30, 31, 32], dtype=np.int64),
- "target_sos_mask": np.array([333, 34, 35, 36, 37, 38], dtype=np.int64),
- "target_eos_ids": np.array([339, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
- "target_eos_mask": np.array([348, 49, 50, 51], dtype=np.int64)},
- {"source_sos_ids": np.array([41, 2, 3, 4, 5], dtype=np.int64),
- "source_sos_mask": np.array([46, 7, 8, 9, 10, 11, 12], dtype=np.int64),
- "source_eos_ids": np.array([413, 14, 15, 16, 17, 18], dtype=np.int64),
- "source_eos_mask": np.array([419, 20, 21, 22, 23, 24, 25, 26, 27], dtype=np.int64),
- "target_sos_ids": np.array([428, 29, 30, 31, 32], dtype=np.int64),
- "target_sos_mask": np.array([433, 34, 35, 36, 37, 38], dtype=np.int64),
- "target_eos_ids": np.array([439, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
- "target_eos_mask": np.array([448, 49, 50, 51], dtype=np.int64)},
- {"source_sos_ids": np.array([51, 2, 3, 4, 5], dtype=np.int64),
- "source_sos_mask": np.array([56, 7, 8, 9, 10, 11, 12], dtype=np.int64),
- "source_eos_ids": np.array([513, 14, 15, 16, 17, 18], dtype=np.int64),
- "source_eos_mask": np.array([519, 20, 21, 22, 23, 24, 25, 26, 27], dtype=np.int64),
- "target_sos_ids": np.array([528, 29, 30, 31, 32], dtype=np.int64),
- "target_sos_mask": np.array([533, 34, 35, 36, 37, 38], dtype=np.int64),
- "target_eos_ids": np.array([539, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
- "target_eos_mask": np.array([548, 49, 50, 51], dtype=np.int64)}
- ]
- writer = FileWriter(mindrecord_file_name)
- schema = {"source_sos_ids": {"type": "int64", "shape": [-1]},
- "source_sos_mask": {"type": "int64", "shape": [-1]},
- "source_eos_ids": {"type": "int64", "shape": [-1]},
- "source_eos_mask": {"type": "int64", "shape": [-1]},
- "target_sos_ids": {"type": "int64", "shape": [-1]},
- "target_sos_mask": {"type": "int64", "shape": [-1]},
- "target_eos_ids": {"type": "int64", "shape": [-1]},
- "target_eos_mask": {"type": "int64", "shape": [-1]}}
- writer.add_schema(schema, "data is so cool")
- writer.write_raw_data(data)
- writer.commit()
-
- # change data value to list - do none
- data_value_to_list = []
- for item in data:
- new_data = {}
- new_data['source_sos_ids'] = item["source_sos_ids"]
- new_data['source_sos_mask'] = item["source_sos_mask"]
- new_data['source_eos_ids'] = item["source_eos_ids"]
- new_data['source_eos_mask'] = item["source_eos_mask"]
- new_data['target_sos_ids'] = item["target_sos_ids"]
- new_data['target_sos_mask'] = item["target_sos_mask"]
- new_data['target_eos_ids'] = item["target_eos_ids"]
- new_data['target_eos_mask'] = item["target_eos_mask"]
- data_value_to_list.append(new_data)
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 8
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["source_eos_ids", "source_eos_mask",
- "target_sos_ids", "target_sos_mask",
- "target_eos_ids", "target_eos_mask"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 6
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["source_sos_ids",
- "target_sos_ids",
- "target_eos_mask"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 3
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["target_eos_mask",
- "source_eos_mask",
- "source_sos_mask"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 3
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 2
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["target_eos_ids"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 1
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- num_readers = 1
- data_set = ds.MindDataset(dataset_file=mindrecord_file_name,
- columns_list=["target_eos_mask", "target_eos_ids",
- "target_sos_mask", "target_sos_ids",
- "source_eos_mask", "source_eos_ids",
- "source_sos_mask", "source_sos_ids"],
- num_parallel_workers=num_readers,
- shuffle=False)
- assert data_set.get_dataset_size() == 6
- num_iter = 0
- for item in data_set.create_dict_iterator():
- assert len(item) == 8
- for field in item:
- if isinstance(item[field], np.ndarray):
- assert (item[field] == data_value_to_list[num_iter][field]).all()
- else:
- assert item[field] == data_value_to_list[num_iter][field]
- num_iter += 1
- assert num_iter == 6
-
- os.remove("{}".format(mindrecord_file_name))
- os.remove("{}.db".format(mindrecord_file_name))
|