You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_biasAddGrad.py 1.5 kB

5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import mindspore.context as context
  17. import mindspore.nn as nn
  18. from mindspore import Tensor
  19. from mindspore.common.api import ms_function
  20. from mindspore.ops.operations import _grad_ops as G
  21. context.set_context(device_target="Ascend")
  22. class Net(nn.Cell):
  23. def __init__(self):
  24. super(Net, self).__init__()
  25. self.bias_add_grad = G.BiasAddGrad()
  26. # self.dout = Parameter(initializer(
  27. # 'normal', [2, 3, 3, 4]), name='dout')
  28. @ms_function
  29. def construct(self, dout_):
  30. return self.bias_add_grad(dout_)
  31. dout = np.ones([2, 3, 4, 4]).astype(np.float32)
  32. bias_add_grad = Net()
  33. output = bias_add_grad(Tensor(dout))
  34. expect_output = np.array([32., 32., 32.]).astype(np.float32)
  35. assert np.all(output.asnumpy() == expect_output), "bias_add_grad execute failed, please check current code commit"
  36. print(output.asnumpy())