|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import pytest
- from mindspore import Tensor
- from mindspore.ops import operations as P
- import mindspore.nn as nn
- from mindspore.common.api import ms_function
- import numpy as np
- import mindspore.context as context
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
-
- context.set_context(device_target='GPU')
-
-
- class ConcatV32(nn.Cell):
- def __init__(self):
- super(ConcatV32, self).__init__()
-
- self.cat = P.Concat(axis=2)
- self.x1 = Parameter(initializer(
- Tensor(np.arange(2 * 2 * 1).reshape(2, 2, 1).astype(np.float32)), [2, 2, 1]), name='x1')
- self.x2 = Parameter(initializer(
- Tensor(np.arange(2 * 2 * 2).reshape(2, 2, 2).astype(np.float32)), [2, 2, 2]), name='x2')
-
- @ms_function
- def construct(self):
- return self.cat((self.x1, self.x2))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_axis32():
- cat = ConcatV32()
- output = cat()
- expect = [[[0., 0., 1.],
- [1., 2., 3.]],
- [[2., 4., 5.],
- [3., 6., 7.]]]
- print(output)
- assert (output.asnumpy() == expect).all()
-
-
- class ConcatV43(nn.Cell):
- def __init__(self):
- super(ConcatV43, self).__init__()
-
- self.cat = P.Concat(axis=3)
- self.x1 = Parameter(initializer(
- Tensor(np.arange(2 * 2 * 2 * 2).reshape(2, 2, 2, 2).astype(np.float32)), [2, 2, 2, 2]), name='x1')
- self.x2 = Parameter(initializer(
- Tensor(np.arange(2 * 2 * 2 * 3).reshape(2, 2, 2, 3).astype(np.float32)), [2, 2, 2, 3]), name='x2')
-
- @ms_function
- def construct(self):
- return self.cat((self.x1, self.x2))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_axis43():
- cat = ConcatV43()
- output = cat()
- expect = [[[[0., 1., 0., 1., 2.],
- [2., 3., 3., 4., 5.]],
- [[4., 5., 6., 7., 8.],
- [6., 7., 9., 10., 11.]]],
- [[[8., 9., 12., 13., 14.],
- [10., 11., 15., 16., 17.]],
- [[12., 13., 18., 19., 20.],
- [14., 15., 21., 22., 23.]]]]
- assert (output.asnumpy() == expect).all()
- print(output)
-
-
- class ConcatV21(nn.Cell):
- def __init__(self):
- super(ConcatV21, self).__init__()
-
- self.cat = P.Concat(axis=1)
- self.x1 = Parameter(initializer(
- Tensor(np.arange(2 * 2).reshape(2, 2).astype(np.float32)), [2, 2]), name='x1')
- self.x2 = Parameter(initializer(
- Tensor(np.arange(2 * 3).reshape(2, 3).astype(np.float32)), [2, 3]), name='x2')
-
- @ms_function
- def construct(self):
- return self.cat((self.x1, self.x2))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_axis21():
- cat = ConcatV21()
- output = cat()
- expect = [[0., 1., 0., 1., 2.],
- [2., 3., 3., 4., 5.]]
- assert (output.asnumpy() == expect).all()
- print(output)
-
-
- class Concat3INet(nn.Cell):
- def __init__(self):
- super(Concat3INet, self).__init__()
- self.cat = P.Concat(axis=1)
-
- def construct(self, x1, x2, x3):
- return self.cat((x1, x2, x3))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_concat_3i():
- cat = Concat3INet()
-
- x1_np = np.random.randn(32, 4, 224, 224).astype(np.float32)
- x2_np = np.random.randn(32, 8, 224, 224).astype(np.float32)
- x3_np = np.random.randn(32, 10, 224, 224).astype(np.float32)
- output_np = np.concatenate((x1_np, x2_np, x3_np), axis=1)
-
- x1_ms = Tensor(x1_np)
- x2_ms = Tensor(x2_np)
- x3_ms = Tensor(x3_np)
- output_ms = cat(x1_ms, x2_ms, x3_ms)
-
- error = np.ones(shape=output_np.shape) * 10e-6
- diff = output_ms.asnumpy() - output_np
- assert np.all(diff < error)
-
-
- class Concat4INet(nn.Cell):
- def __init__(self):
- super(Concat4INet, self).__init__()
- self.cat = P.Concat(axis=1)
-
- def construct(self, x1, x2, x3, x4):
- return self.cat((x1, x2, x3, x4))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_concat_4i():
- cat = Concat4INet()
-
- x1_np = np.random.randn(32, 4, 224, 224).astype(np.float32)
- x2_np = np.random.randn(32, 8, 224, 224).astype(np.float32)
- x3_np = np.random.randn(32, 10, 224, 224).astype(np.float32)
- x4_np = np.random.randn(32, 5, 224, 224).astype(np.float32)
- output_np = np.concatenate((x1_np, x2_np, x3_np, x4_np), axis=1)
-
- x1_ms = Tensor(x1_np)
- x2_ms = Tensor(x2_np)
- x3_ms = Tensor(x3_np)
- x4_ms = Tensor(x4_np)
- output_ms = cat(x1_ms, x2_ms, x3_ms, x4_ms)
-
- error = np.ones(shape=output_np.shape) * 10e-6
- diff = output_ms.asnumpy() - output_np
- assert np.all(diff < error)
|