You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_broadcast_op.py 5.3 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import pytest
  16. from mindspore.ops import operations as P
  17. from mindspore.nn import Cell
  18. from mindspore.common.tensor import Tensor
  19. import mindspore.common.dtype as mstype
  20. import mindspore.context as context
  21. import numpy as np
  22. @pytest.mark.level0
  23. @pytest.mark.platform_x86_gpu_training
  24. @pytest.mark.env_onecard
  25. def test_nobroadcast():
  26. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  27. x1_np = np.random.rand(10, 20).astype(np.float32)
  28. x2_np = np.random.rand(10, 20).astype(np.float32)
  29. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  30. output_np = np.minimum(x1_np, x2_np)
  31. assert np.allclose(output_ms.asnumpy(), output_np)
  32. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  33. output_np = np.maximum(x1_np, x2_np)
  34. assert np.allclose(output_ms.asnumpy(), output_np)
  35. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  36. output_np = x1_np > x2_np
  37. assert np.allclose(output_ms.asnumpy(), output_np)
  38. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  39. output_np = x1_np < x2_np
  40. assert np.allclose(output_ms.asnumpy(), output_np)
  41. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  42. output_np = np.power(x1_np, x2_np)
  43. assert np.allclose(output_ms.asnumpy(), output_np)
  44. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  45. output_np = x1_np / x2_np
  46. assert np.allclose(output_ms.asnumpy(), output_np)
  47. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  48. output_np = x1_np * x2_np
  49. assert np.allclose(output_ms.asnumpy(), output_np)
  50. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  51. output_np = x1_np - x2_np
  52. assert np.allclose(output_ms.asnumpy(), output_np)
  53. @pytest.mark.level0
  54. @pytest.mark.platform_x86_gpu_training
  55. @pytest.mark.env_onecard
  56. def test_broadcast():
  57. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  58. x1_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
  59. x2_np = np.random.rand(1, 4, 1, 6).astype(np.float32)
  60. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  61. output_np = np.minimum(x1_np, x2_np)
  62. assert np.allclose(output_ms.asnumpy(), output_np)
  63. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  64. output_np = np.maximum(x1_np, x2_np)
  65. assert np.allclose(output_ms.asnumpy(), output_np)
  66. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  67. output_np = x1_np > x2_np
  68. assert np.allclose(output_ms.asnumpy(), output_np)
  69. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  70. output_np = x1_np < x2_np
  71. assert np.allclose(output_ms.asnumpy(), output_np)
  72. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  73. output_np = np.power(x1_np, x2_np)
  74. assert np.allclose(output_ms.asnumpy(), output_np)
  75. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  76. output_np = x1_np / x2_np
  77. assert np.allclose(output_ms.asnumpy(), output_np)
  78. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  79. output_np = x1_np * x2_np
  80. assert np.allclose(output_ms.asnumpy(), output_np)
  81. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  82. output_np = x1_np - x2_np
  83. assert np.allclose(output_ms.asnumpy(), output_np)
  84. @pytest.mark.level0
  85. @pytest.mark.platform_x86_gpu_training
  86. @pytest.mark.env_onecard
  87. def test_broadcast_diff_dims():
  88. context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
  89. x1_np = np.random.rand(2).astype(np.float32)
  90. x2_np = np.random.rand(2, 1).astype(np.float32)
  91. output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
  92. output_np = np.minimum(x1_np, x2_np)
  93. assert np.allclose(output_ms.asnumpy(), output_np)
  94. output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
  95. output_np = np.maximum(x1_np, x2_np)
  96. assert np.allclose(output_ms.asnumpy(), output_np)
  97. output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
  98. output_np = x1_np > x2_np
  99. assert np.allclose(output_ms.asnumpy(), output_np)
  100. output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
  101. output_np = x1_np < x2_np
  102. assert np.allclose(output_ms.asnumpy(), output_np)
  103. output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
  104. output_np = np.power(x1_np, x2_np)
  105. assert np.allclose(output_ms.asnumpy(), output_np)
  106. output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
  107. output_np = x1_np / x2_np
  108. assert np.allclose(output_ms.asnumpy(), output_np)
  109. output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
  110. output_np = x1_np * x2_np
  111. assert np.allclose(output_ms.asnumpy(), output_np)
  112. output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
  113. output_np = x1_np - x2_np
  114. assert np.allclose(output_ms.asnumpy(), output_np)