You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train launch."""
  16. import os
  17. import time
  18. import argparse
  19. import datetime
  20. import mindspore.nn as nn
  21. from mindspore import Tensor
  22. from mindspore.nn.optim import Momentum
  23. from mindspore.communication.management import init, get_rank, get_group_size
  24. from mindspore.train.callback import ModelCheckpoint
  25. from mindspore.train.callback import CheckpointConfig, Callback
  26. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  27. from mindspore.train.model import Model
  28. from mindspore.train.loss_scale_manager import DynamicLossScaleManager, FixedLossScaleManager
  29. from mindspore import context
  30. from mindspore.context import ParallelMode
  31. from mindspore.common import set_seed
  32. from src.optimizers import get_param_groups
  33. from src.network import DenseNet121
  34. from src.datasets import classification_dataset
  35. from src.losses.crossentropy import CrossEntropy
  36. from src.lr_scheduler import MultiStepLR, CosineAnnealingLR
  37. from src.utils.logging import get_logger
  38. from src.config import config
  39. set_seed(1)
  40. class BuildTrainNetwork(nn.Cell):
  41. """build training network"""
  42. def __init__(self, network, criterion):
  43. super(BuildTrainNetwork, self).__init__()
  44. self.network = network
  45. self.criterion = criterion
  46. def construct(self, input_data, label):
  47. output = self.network(input_data)
  48. loss = self.criterion(output, label)
  49. return loss
  50. class ProgressMonitor(Callback):
  51. """monitor loss and time"""
  52. def __init__(self, args):
  53. super(ProgressMonitor, self).__init__()
  54. self.me_epoch_start_time = 0
  55. self.me_epoch_start_step_num = 0
  56. self.args = args
  57. self.ckpt_history = []
  58. def begin(self, run_context):
  59. self.args.logger.info('start network train...')
  60. def epoch_begin(self, run_context):
  61. pass
  62. def epoch_end(self, run_context, *me_args):
  63. """process epoch end"""
  64. cb_params = run_context.original_args()
  65. me_step = cb_params.cur_step_num - 1
  66. real_epoch = me_step // self.args.steps_per_epoch
  67. time_used = time.time() - self.me_epoch_start_time
  68. fps_mean = self.args.per_batch_size * (me_step-self.me_epoch_start_step_num) * self.args.group_size / time_used
  69. self.args.logger.info('epoch[{}], iter[{}], loss:{},'
  70. 'mean_fps:{:.2f} imgs/sec'.format(real_epoch, me_step, cb_params.net_outputs, fps_mean))
  71. if self.args.rank_save_ckpt_flag:
  72. import glob
  73. ckpts = glob.glob(os.path.join(self.args.outputs_dir, '*.ckpt'))
  74. for ckpt in ckpts:
  75. ckpt_fn = os.path.basename(ckpt)
  76. if not ckpt_fn.startswith('{}-'.format(self.args.rank)):
  77. continue
  78. if ckpt in self.ckpt_history:
  79. continue
  80. self.ckpt_history.append(ckpt)
  81. self.args.logger.info('epoch[{}], iter[{}], loss:{}, ckpt:{},'
  82. 'ckpt_fn:{}'.format(real_epoch, me_step, cb_params.net_outputs, ckpt, ckpt_fn))
  83. self.me_epoch_start_step_num = me_step
  84. self.me_epoch_start_time = time.time()
  85. def step_begin(self, run_context):
  86. pass
  87. def step_end(self, run_context, *me_args):
  88. pass
  89. def end(self, run_context):
  90. self.args.logger.info('end network train...')
  91. def parse_args(cloud_args=None):
  92. """parameters"""
  93. parser = argparse.ArgumentParser('mindspore classification training')
  94. # dataset related
  95. parser.add_argument('--data_dir', type=str, default='', help='train data dir')
  96. # network related
  97. parser.add_argument('--pretrained', default='', type=str, help='model_path, local pretrained model to load')
  98. # distributed related
  99. parser.add_argument('--is_distributed', type=int, default=1, help='if multi device')
  100. # roma obs
  101. parser.add_argument('--train_url', type=str, default="", help='train url')
  102. # platform
  103. parser.add_argument('--device_target', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='device target')
  104. args, _ = parser.parse_known_args()
  105. args = merge_args(args, cloud_args)
  106. args.image_size = config.image_size
  107. args.num_classes = config.num_classes
  108. args.lr = config.lr
  109. args.lr_scheduler = config.lr_scheduler
  110. args.lr_epochs = config.lr_epochs
  111. args.lr_gamma = config.lr_gamma
  112. args.eta_min = config.eta_min
  113. args.T_max = config.T_max
  114. args.max_epoch = config.max_epoch
  115. args.warmup_epochs = config.warmup_epochs
  116. args.weight_decay = config.weight_decay
  117. args.momentum = config.momentum
  118. args.is_dynamic_loss_scale = config.is_dynamic_loss_scale
  119. args.loss_scale = config.loss_scale
  120. args.label_smooth = config.label_smooth
  121. args.label_smooth_factor = config.label_smooth_factor
  122. args.ckpt_interval = config.ckpt_interval
  123. args.ckpt_path = config.ckpt_path
  124. args.is_save_on_master = config.is_save_on_master
  125. args.rank = config.rank
  126. args.group_size = config.group_size
  127. args.log_interval = config.log_interval
  128. args.per_batch_size = config.per_batch_size
  129. args.lr_epochs = list(map(int, args.lr_epochs.split(',')))
  130. args.image_size = list(map(int, args.image_size.split(',')))
  131. return args
  132. def merge_args(args, cloud_args):
  133. """dictionary"""
  134. args_dict = vars(args)
  135. if isinstance(cloud_args, dict):
  136. for key in cloud_args.keys():
  137. val = cloud_args[key]
  138. if key in args_dict and val:
  139. arg_type = type(args_dict[key])
  140. if arg_type is not type(None):
  141. val = arg_type(val)
  142. args_dict[key] = val
  143. return args
  144. def train(cloud_args=None):
  145. """training process"""
  146. args = parse_args(cloud_args)
  147. context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
  148. device_target=args.device_target, save_graphs=False)
  149. if args.device_target == 'Ascend':
  150. devid = int(os.getenv('DEVICE_ID'))
  151. context.set_context(device_id=devid)
  152. # init distributed
  153. if args.is_distributed:
  154. init()
  155. args.rank = get_rank()
  156. args.group_size = get_group_size()
  157. if args.is_dynamic_loss_scale == 1:
  158. args.loss_scale = 1 # for dynamic loss scale can not set loss scale in momentum opt
  159. # select for master rank save ckpt or all rank save, compatible for model parallel
  160. args.rank_save_ckpt_flag = 0
  161. if args.is_save_on_master:
  162. if args.rank == 0:
  163. args.rank_save_ckpt_flag = 1
  164. else:
  165. args.rank_save_ckpt_flag = 1
  166. # logger
  167. args.outputs_dir = os.path.join(args.ckpt_path,
  168. datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
  169. args.logger = get_logger(args.outputs_dir, args.rank)
  170. # dataloader
  171. de_dataset = classification_dataset(args.data_dir, args.image_size,
  172. args.per_batch_size, args.max_epoch,
  173. args.rank, args.group_size)
  174. de_dataset.map_model = 4
  175. args.steps_per_epoch = de_dataset.get_dataset_size()
  176. args.logger.save_args(args)
  177. # network
  178. args.logger.important_info('start create network')
  179. # get network and init
  180. network = DenseNet121(args.num_classes)
  181. # loss
  182. if not args.label_smooth:
  183. args.label_smooth_factor = 0.0
  184. criterion = CrossEntropy(smooth_factor=args.label_smooth_factor,
  185. num_classes=args.num_classes)
  186. # load pretrain model
  187. if os.path.isfile(args.pretrained):
  188. param_dict = load_checkpoint(args.pretrained)
  189. param_dict_new = {}
  190. for key, values in param_dict.items():
  191. if key.startswith('moments.'):
  192. continue
  193. elif key.startswith('network.'):
  194. param_dict_new[key[8:]] = values
  195. else:
  196. param_dict_new[key] = values
  197. load_param_into_net(network, param_dict_new)
  198. args.logger.info('load model {} success'.format(args.pretrained))
  199. # lr scheduler
  200. if args.lr_scheduler == 'exponential':
  201. lr_scheduler = MultiStepLR(args.lr,
  202. args.lr_epochs,
  203. args.lr_gamma,
  204. args.steps_per_epoch,
  205. args.max_epoch,
  206. warmup_epochs=args.warmup_epochs)
  207. elif args.lr_scheduler == 'cosine_annealing':
  208. lr_scheduler = CosineAnnealingLR(args.lr,
  209. args.T_max,
  210. args.steps_per_epoch,
  211. args.max_epoch,
  212. warmup_epochs=args.warmup_epochs,
  213. eta_min=args.eta_min)
  214. else:
  215. raise NotImplementedError(args.lr_scheduler)
  216. lr_schedule = lr_scheduler.get_lr()
  217. # optimizer
  218. opt = Momentum(params=get_param_groups(network),
  219. learning_rate=Tensor(lr_schedule),
  220. momentum=args.momentum,
  221. weight_decay=args.weight_decay,
  222. loss_scale=args.loss_scale)
  223. # mixed precision training
  224. criterion.add_flags_recursive(fp32=True)
  225. # package training process, adjust lr + forward + backward + optimizer
  226. train_net = BuildTrainNetwork(network, criterion)
  227. if args.is_distributed:
  228. parallel_mode = ParallelMode.DATA_PARALLEL
  229. else:
  230. parallel_mode = ParallelMode.STAND_ALONE
  231. if args.is_dynamic_loss_scale == 1:
  232. loss_scale_manager = DynamicLossScaleManager(init_loss_scale=65536, scale_factor=2, scale_window=2000)
  233. else:
  234. loss_scale_manager = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False)
  235. context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=args.group_size,
  236. gradients_mean=True)
  237. if args.device_target == 'Ascend':
  238. model = Model(train_net, optimizer=opt, metrics=None, loss_scale_manager=loss_scale_manager, amp_level="O3")
  239. elif args.device_target == 'GPU':
  240. model = Model(train_net, optimizer=opt, metrics=None, loss_scale_manager=loss_scale_manager, amp_level="O0")
  241. else:
  242. raise ValueError("Unsupported device target.")
  243. # checkpoint save
  244. progress_cb = ProgressMonitor(args)
  245. callbacks = [progress_cb,]
  246. if args.rank_save_ckpt_flag:
  247. ckpt_max_num = args.max_epoch * args.steps_per_epoch // args.ckpt_interval
  248. ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval,
  249. keep_checkpoint_max=ckpt_max_num)
  250. ckpt_cb = ModelCheckpoint(config=ckpt_config,
  251. directory=args.outputs_dir,
  252. prefix='{}'.format(args.rank))
  253. callbacks.append(ckpt_cb)
  254. model.train(args.max_epoch, de_dataset, callbacks=callbacks)
  255. if __name__ == "__main__":
  256. train()