|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """MaskRcnn dataset"""
- from __future__ import division
-
- import os
- import numpy as np
- from numpy import random
-
- import mmcv
- import mindspore.dataset as de
- import mindspore.dataset.transforms.vision.c_transforms as C
- from mindspore.mindrecord import FileWriter
- from src.config import config
- import cv2
-
- def bbox_overlaps(bboxes1, bboxes2, mode='iou'):
- """Calculate the ious between each bbox of bboxes1 and bboxes2.
-
- Args:
- bboxes1(ndarray): shape (n, 4)
- bboxes2(ndarray): shape (k, 4)
- mode(str): iou (intersection over union) or iof (intersection
- over foreground)
-
- Returns:
- ious(ndarray): shape (n, k)
- """
-
- assert mode in ['iou', 'iof']
-
- bboxes1 = bboxes1.astype(np.float32)
- bboxes2 = bboxes2.astype(np.float32)
- rows = bboxes1.shape[0]
- cols = bboxes2.shape[0]
- ious = np.zeros((rows, cols), dtype=np.float32)
- if rows * cols == 0:
- return ious
- exchange = False
- if bboxes1.shape[0] > bboxes2.shape[0]:
- bboxes1, bboxes2 = bboxes2, bboxes1
- ious = np.zeros((cols, rows), dtype=np.float32)
- exchange = True
- area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * (bboxes1[:, 3] - bboxes1[:, 1] + 1)
- area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * (bboxes2[:, 3] - bboxes2[:, 1] + 1)
- for i in range(bboxes1.shape[0]):
- x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0])
- y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1])
- x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2])
- y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3])
- overlap = np.maximum(x_end - x_start + 1, 0) * np.maximum(
- y_end - y_start + 1, 0)
- if mode == 'iou':
- union = area1[i] + area2 - overlap
- else:
- union = area1[i] if not exchange else area2
- ious[i, :] = overlap / union
- if exchange:
- ious = ious.T
- return ious
-
- class PhotoMetricDistortion:
- """Photo Metric Distortion"""
- def __init__(self,
- brightness_delta=32,
- contrast_range=(0.5, 1.5),
- saturation_range=(0.5, 1.5),
- hue_delta=18):
- self.brightness_delta = brightness_delta
- self.contrast_lower, self.contrast_upper = contrast_range
- self.saturation_lower, self.saturation_upper = saturation_range
- self.hue_delta = hue_delta
-
- def __call__(self, img, boxes, labels):
- # random brightness
- img = img.astype('float32')
-
- if random.randint(2):
- delta = random.uniform(-self.brightness_delta,
- self.brightness_delta)
- img += delta
-
- # mode == 0 --> do random contrast first
- # mode == 1 --> do random contrast last
- mode = random.randint(2)
- if mode == 1:
- if random.randint(2):
- alpha = random.uniform(self.contrast_lower,
- self.contrast_upper)
- img *= alpha
-
- # convert color from BGR to HSV
- img = mmcv.bgr2hsv(img)
-
- # random saturation
- if random.randint(2):
- img[..., 1] *= random.uniform(self.saturation_lower,
- self.saturation_upper)
-
- # random hue
- if random.randint(2):
- img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta)
- img[..., 0][img[..., 0] > 360] -= 360
- img[..., 0][img[..., 0] < 0] += 360
-
- # convert color from HSV to BGR
- img = mmcv.hsv2bgr(img)
-
- # random contrast
- if mode == 0:
- if random.randint(2):
- alpha = random.uniform(self.contrast_lower,
- self.contrast_upper)
- img *= alpha
-
- # randomly swap channels
- if random.randint(2):
- img = img[..., random.permutation(3)]
-
- return img, boxes, labels
-
- class Expand:
- """expand image"""
- def __init__(self, mean=(0, 0, 0), to_rgb=True, ratio_range=(1, 4)):
- if to_rgb:
- self.mean = mean[::-1]
- else:
- self.mean = mean
- self.min_ratio, self.max_ratio = ratio_range
-
- def __call__(self, img, boxes, labels, mask):
- if random.randint(2):
- return img, boxes, labels, mask
-
- h, w, c = img.shape
- ratio = random.uniform(self.min_ratio, self.max_ratio)
- expand_img = np.full((int(h * ratio), int(w * ratio), c),
- self.mean).astype(img.dtype)
- left = int(random.uniform(0, w * ratio - w))
- top = int(random.uniform(0, h * ratio - h))
- expand_img[top:top + h, left:left + w] = img
- img = expand_img
- boxes += np.tile((left, top), 2)
-
- mask_count, mask_h, mask_w = mask.shape
- expand_mask = np.zeros((mask_count, int(mask_h * ratio), int(mask_w * ratio))).astype(mask.dtype)
- expand_mask[:, top:top + h, left:left + w] = mask
- mask = expand_mask
-
- return img, boxes, labels, mask
-
- def rescale_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
- """rescale operation for image"""
- img_data, scale_factor = mmcv.imrescale(img, (config.img_width, config.img_height), return_scale=True)
- if img_data.shape[0] > config.img_height:
- img_data, scale_factor2 = mmcv.imrescale(img_data, (config.img_height, config.img_height), return_scale=True)
- scale_factor = scale_factor*scale_factor2
-
- gt_bboxes = gt_bboxes * scale_factor
- gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1] - 1)
- gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0] - 1)
-
- gt_mask_data = np.array([
- mmcv.imrescale(mask, scale_factor, interpolation='nearest')
- for mask in gt_mask
- ])
-
- pad_h = config.img_height - img_data.shape[0]
- pad_w = config.img_width - img_data.shape[1]
- assert ((pad_h >= 0) and (pad_w >= 0))
-
- pad_img_data = np.zeros((config.img_height, config.img_width, 3)).astype(img_data.dtype)
- pad_img_data[0:img_data.shape[0], 0:img_data.shape[1], :] = img_data
-
- mask_count, mask_h, mask_w = gt_mask_data.shape
- pad_mask = np.zeros((mask_count, config.img_height, config.img_width)).astype(gt_mask_data.dtype)
- pad_mask[:, 0:mask_h, 0:mask_w] = gt_mask_data
-
- img_shape = (config.img_height, config.img_width, 1.0)
- img_shape = np.asarray(img_shape, dtype=np.float32)
-
- return (pad_img_data, img_shape, gt_bboxes, gt_label, gt_num, pad_mask)
-
- def rescale_column_test(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
- """rescale operation for image of eval"""
- img_data, scale_factor = mmcv.imrescale(img, (config.img_width, config.img_height), return_scale=True)
- if img_data.shape[0] > config.img_height:
- img_data, scale_factor2 = mmcv.imrescale(img_data, (config.img_height, config.img_height), return_scale=True)
- scale_factor = scale_factor*scale_factor2
-
- pad_h = config.img_height - img_data.shape[0]
- pad_w = config.img_width - img_data.shape[1]
- assert ((pad_h >= 0) and (pad_w >= 0))
-
- pad_img_data = np.zeros((config.img_height, config.img_width, 3)).astype(img_data.dtype)
- pad_img_data[0:img_data.shape[0], 0:img_data.shape[1], :] = img_data
-
- img_shape = np.append(img_shape, (scale_factor, scale_factor))
- img_shape = np.asarray(img_shape, dtype=np.float32)
-
- return (pad_img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask)
-
- def resize_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
- """resize operation for image"""
- img_data = img
- img_data, w_scale, h_scale = mmcv.imresize(
- img_data, (config.img_width, config.img_height), return_scale=True)
- scale_factor = np.array(
- [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
- img_shape = (config.img_height, config.img_width, 1.0)
- img_shape = np.asarray(img_shape, dtype=np.float32)
-
- gt_bboxes = gt_bboxes * scale_factor
- gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1] - 1) # x1, x2 [0, W-1]
- gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0] - 1) # y1, y2 [0, H-1]
-
- gt_mask_data = np.array([
- mmcv.imresize(mask, (config.img_width, config.img_height), interpolation='nearest')
- for mask in gt_mask
- ])
- return (img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask_data)
-
- def resize_column_test(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
- """resize operation for image of eval"""
- img_data = img
- img_data, w_scale, h_scale = mmcv.imresize(
- img_data, (config.img_width, config.img_height), return_scale=True)
- img_shape = np.append(img_shape, (h_scale, w_scale))
- img_shape = np.asarray(img_shape, dtype=np.float32)
-
- return (img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask)
-
- def impad_to_multiple_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
- """impad operation for image"""
- img_data = mmcv.impad(img, (config.img_height, config.img_width))
- img_data = img_data.astype(np.float32)
- return (img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask)
-
- def imnormalize_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
- """imnormalize operation for image"""
- img_data = mmcv.imnormalize(img, [123.675, 116.28, 103.53], [58.395, 57.12, 57.375], True)
- img_data = img_data.astype(np.float32)
- return (img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask)
-
- def flip_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
- """flip operation for image"""
- img_data = img
- img_data = mmcv.imflip(img_data)
- flipped = gt_bboxes.copy()
- _, w, _ = img_data.shape
-
- flipped[..., 0::4] = w - gt_bboxes[..., 2::4] - 1 # x1 = W-x2-1
- flipped[..., 2::4] = w - gt_bboxes[..., 0::4] - 1 # x2 = W-x1-1
-
- gt_mask_data = np.array([mask[:, ::-1] for mask in gt_mask])
-
- return (img_data, img_shape, flipped, gt_label, gt_num, gt_mask_data)
-
- def transpose_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
- """transpose operation for image"""
- img_data = img.transpose(2, 0, 1).copy()
- img_data = img_data.astype(np.float16)
- img_shape = img_shape.astype(np.float16)
- gt_bboxes = gt_bboxes.astype(np.float16)
- gt_label = gt_label.astype(np.int32)
- gt_num = gt_num.astype(np.bool)
- gt_mask_data = gt_mask.astype(np.bool)
-
- return (img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask_data)
-
- def photo_crop_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
- """photo crop operation for image"""
- random_photo = PhotoMetricDistortion()
- img_data, gt_bboxes, gt_label = random_photo(img, gt_bboxes, gt_label)
-
- return (img_data, img_shape, gt_bboxes, gt_label, gt_num, gt_mask)
-
- def expand_column(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask):
- """expand operation for image"""
- expand = Expand()
- img, gt_bboxes, gt_label, gt_mask = expand(img, gt_bboxes, gt_label, gt_mask)
-
- return (img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask)
-
- def pad_to_max(img, img_shape, gt_bboxes, gt_label, gt_num, gt_mask, instance_count):
- pad_max_number = config.max_instance_count
- gt_box_new = np.pad(gt_bboxes, ((0, pad_max_number - instance_count), (0, 0)), mode="constant", constant_values=0)
- gt_label_new = np.pad(gt_label, ((0, pad_max_number - instance_count)), mode="constant", constant_values=-1)
- gt_iscrowd_new = np.pad(gt_num, ((0, pad_max_number - instance_count)), mode="constant", constant_values=1)
- gt_iscrowd_new_revert = ~(gt_iscrowd_new.astype(np.bool))
- gt_mask_new = np.pad(gt_mask, ((0, pad_max_number - instance_count), (0, 0), (0, 0)), mode="constant",
- constant_values=0)
-
- return img, img_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert, gt_mask_new
-
- def preprocess_fn(image, box, mask, mask_shape, is_training):
- """Preprocess function for dataset."""
- def _infer_data(image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert,
- gt_mask_new, instance_count):
- image_shape = image_shape[:2]
- input_data = image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert, gt_mask_new
-
- if config.keep_ratio:
- input_data = rescale_column_test(*input_data)
- else:
- input_data = resize_column_test(*input_data)
- input_data = imnormalize_column(*input_data)
-
- input_data = pad_to_max(*input_data, instance_count)
- output_data = transpose_column(*input_data)
- return output_data
-
- def _data_aug(image, box, mask, mask_shape, is_training):
- """Data augmentation function."""
- image_bgr = image.copy()
- image_bgr[:, :, 0] = image[:, :, 2]
- image_bgr[:, :, 1] = image[:, :, 1]
- image_bgr[:, :, 2] = image[:, :, 0]
- image_shape = image_bgr.shape[:2]
- instance_count = box.shape[0]
- gt_box = box[:, :4]
- gt_label = box[:, 4]
- gt_iscrowd = box[:, 5]
- gt_mask = mask.copy()
- n, h, w = mask_shape
- gt_mask = gt_mask.reshape(n, h, w)
- assert n == box.shape[0]
-
- if not is_training:
- return _infer_data(image_bgr, image_shape, gt_box, gt_label, gt_iscrowd, gt_mask, instance_count)
-
- flip = (np.random.rand() < config.flip_ratio)
- expand = (np.random.rand() < config.expand_ratio)
-
- input_data = image_bgr, image_shape, gt_box, gt_label, gt_iscrowd, gt_mask
-
- if expand:
- input_data = expand_column(*input_data)
- if config.keep_ratio:
- input_data = rescale_column(*input_data)
- else:
- input_data = resize_column(*input_data)
-
- input_data = imnormalize_column(*input_data)
- if flip:
- input_data = flip_column(*input_data)
-
- input_data = pad_to_max(*input_data, instance_count)
- output_data = transpose_column(*input_data)
- return output_data
-
- return _data_aug(image, box, mask, mask_shape, is_training)
-
- def annToMask(ann, height, width):
- """Convert annotation to RLE and then to binary mask."""
- from pycocotools import mask as maskHelper
- segm = ann['segmentation']
- if isinstance(segm, list):
- rles = maskHelper.frPyObjects(segm, height, width)
- rle = maskHelper.merge(rles)
- elif isinstance(segm['counts'], list):
- rle = maskHelper.frPyObjects(segm, height, width)
- else:
- rle = ann['segmentation']
- m = maskHelper.decode(rle)
- return m
-
- def create_coco_label(is_training):
- """Get image path and annotation from COCO."""
- from pycocotools.coco import COCO
-
- coco_root = config.coco_root
- data_type = config.val_data_type
- if is_training:
- data_type = config.train_data_type
-
- #Classes need to train or test.
- train_cls = config.coco_classes
- train_cls_dict = {}
- for i, cls in enumerate(train_cls):
- train_cls_dict[cls] = i
-
- anno_json = os.path.join(coco_root, config.instance_set.format(data_type))
-
- coco = COCO(anno_json)
- classs_dict = {}
- cat_ids = coco.loadCats(coco.getCatIds())
- for cat in cat_ids:
- classs_dict[cat["id"]] = cat["name"]
-
- image_ids = coco.getImgIds()
- image_files = []
- image_anno_dict = {}
- masks = {}
- masks_shape = {}
- for img_id in image_ids:
- image_info = coco.loadImgs(img_id)
- file_name = image_info[0]["file_name"]
- anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=None)
- anno = coco.loadAnns(anno_ids)
- image_path = os.path.join(coco_root, data_type, file_name)
- annos = []
- instance_masks = []
- image_height = coco.imgs[img_id]["height"]
- image_width = coco.imgs[img_id]["width"]
- print("image file name: ", file_name)
- if not is_training:
- image_files.append(image_path)
- image_anno_dict[image_path] = np.array([0, 0, 0, 0, 0, 1])
- masks[image_path] = np.zeros([1, 1, 1], dtype=np.bool).tobytes()
- masks_shape[image_path] = np.array([1, 1, 1], dtype=np.int32)
- else:
- for label in anno:
- bbox = label["bbox"]
- class_name = classs_dict[label["category_id"]]
- if class_name in train_cls:
- # get coco mask
- m = annToMask(label, image_height, image_width)
- if m.max() < 1:
- print("all black mask!!!!")
- continue
- # Resize mask for the crowd
- if label['iscrowd'] and (m.shape[0] != image_height or m.shape[1] != image_width):
- m = np.ones([image_height, image_width], dtype=np.bool)
- instance_masks.append(m)
-
- # get coco bbox
- x1, x2 = bbox[0], bbox[0] + bbox[2]
- y1, y2 = bbox[1], bbox[1] + bbox[3]
- annos.append([x1, y1, x2, y2] + [train_cls_dict[class_name]] + [int(label["iscrowd"])])
- else:
- print("not in classes: ", class_name)
-
- image_files.append(image_path)
- if annos:
- image_anno_dict[image_path] = np.array(annos)
- instance_masks = np.stack(instance_masks, axis=0).astype(np.bool)
- masks[image_path] = np.array(instance_masks).tobytes()
- masks_shape[image_path] = np.array(instance_masks.shape, dtype=np.int32)
- else:
- print("no annotations for image ", file_name)
- image_anno_dict[image_path] = np.array([0, 0, 0, 0, 0, 1])
- masks[image_path] = np.zeros([1, image_height, image_width], dtype=np.bool).tobytes()
- masks_shape[image_path] = np.array([1, image_height, image_width], dtype=np.int32)
-
- return image_files, image_anno_dict, masks, masks_shape
-
- def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="maskrcnn.mindrecord", file_num=8):
- """Create MindRecord file."""
- mindrecord_dir = config.mindrecord_dir
- mindrecord_path = os.path.join(mindrecord_dir, prefix)
-
- writer = FileWriter(mindrecord_path, file_num)
- if dataset == "coco":
- image_files, image_anno_dict, masks, masks_shape = create_coco_label(is_training)
- else:
- print("Error unsupport other dataset")
- return
-
- maskrcnn_json = {
- "image": {"type": "bytes"},
- "annotation": {"type": "int32", "shape": [-1, 6]},
- "mask": {"type": "bytes"},
- "mask_shape": {"type": "int32", "shape": [-1]},
- }
- writer.add_schema(maskrcnn_json, "maskrcnn_json")
-
- for image_name in image_files:
- with open(image_name, 'rb') as f:
- img = f.read()
- annos = np.array(image_anno_dict[image_name], dtype=np.int32)
- mask = masks[image_name]
- mask_shape = masks_shape[image_name]
- row = {"image": img, "annotation": annos, "mask": mask, "mask_shape": mask_shape}
- writer.write_raw_data([row])
- writer.commit()
-
- def create_maskrcnn_dataset(mindrecord_file, batch_size=2, device_num=1, rank_id=0,
- is_training=True, num_parallel_workers=8):
- """Create MaskRcnn dataset with MindDataset."""
- cv2.setNumThreads(0)
- de.config.set_prefetch_size(8)
- ds = de.MindDataset(mindrecord_file, columns_list=["image", "annotation", "mask", "mask_shape"],
- num_shards=device_num, shard_id=rank_id,
- num_parallel_workers=4, shuffle=is_training)
-
- decode = C.Decode()
- ds = ds.map(input_columns=["image"], operations=decode)
- compose_map_func = (lambda image, annotation, mask, mask_shape:
- preprocess_fn(image, annotation, mask, mask_shape, is_training))
-
- if is_training:
- ds = ds.map(input_columns=["image", "annotation", "mask", "mask_shape"],
- output_columns=["image", "image_shape", "box", "label", "valid_num", "mask"],
- columns_order=["image", "image_shape", "box", "label", "valid_num", "mask"],
- operations=compose_map_func,
- python_multiprocessing=False,
- num_parallel_workers=num_parallel_workers)
- ds = ds.batch(batch_size, drop_remainder=True)
-
- else:
- ds = ds.map(input_columns=["image", "annotation", "mask", "mask_shape"],
- output_columns=["image", "image_shape", "box", "label", "valid_num", "mask"],
- columns_order=["image", "image_shape", "box", "label", "valid_num", "mask"],
- operations=compose_map_func,
- num_parallel_workers=num_parallel_workers)
- ds = ds.batch(batch_size, drop_remainder=True)
-
- return ds
|