You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_dropout.py 1.9 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. class Net(nn.Cell):
  22. def __init__(self, keep_prob):
  23. super(Net, self).__init__()
  24. self.drop = P.Dropout(keep_prob)
  25. def construct(self, x_):
  26. return self.drop(x_)
  27. @pytest.mark.level0
  28. @pytest.mark.platform_x86_gpu_training
  29. @pytest.mark.env_onecard
  30. def test_dropout():
  31. context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
  32. x_shape = [4096, 768]
  33. x = np.ones(x_shape).astype(np.float32)
  34. keep_prob = 0.9
  35. dropout = Net(keep_prob)
  36. tx = Tensor(x)
  37. output, mask = dropout(tx)
  38. output_np = output.asnumpy()
  39. elem_count = x.size
  40. nonzero_count = np.count_nonzero(output_np)
  41. assert (elem_count * (keep_prob - 0.1)) < nonzero_count < (elem_count * (keep_prob + 0.1))
  42. output_sum = np.sum(output_np)
  43. x_sum = np.sum(x)
  44. assert abs(output_sum - x_sum)/x_sum < 0.1
  45. # check mask
  46. mask_np = mask.asnumpy()
  47. mask_sum = np.sum(mask_np)
  48. assert np.count_nonzero(mask_np) == nonzero_count
  49. assert abs(mask_sum - nonzero_count)/nonzero_count < 0.1