You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_cast_op.py 2.4 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.common.dtype as mstype
  18. import mindspore.context as context
  19. from mindspore.common.tensor import Tensor
  20. from mindspore.nn import Cell
  21. from mindspore.ops import operations as P
  22. class Net(Cell):
  23. def __init__(self, dtype):
  24. super(Net, self).__init__()
  25. self.Cast = P.Cast()
  26. self.dtype = dtype
  27. def construct(self, x):
  28. return self.Cast(x, self.dtype)
  29. @pytest.mark.level0
  30. @pytest.mark.platform_x86_cpu
  31. @pytest.mark.env_onecard
  32. def test_cast_int32():
  33. x0 = Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))
  34. x1 = Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))
  35. x2 = Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))
  36. t = mstype.int32
  37. context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
  38. net = Net(t)
  39. output = net(x0)
  40. type0 = output.asnumpy().dtype
  41. assert type0 == 'int32'
  42. output = net(x1)
  43. type1 = output.asnumpy().dtype
  44. assert type1 == 'int32'
  45. output = net(x2)
  46. type2 = output.asnumpy().dtype
  47. assert type2 == 'int32'
  48. @pytest.mark.level0
  49. @pytest.mark.platform_x86_cpu
  50. @pytest.mark.env_onecard
  51. def test_cast_float32():
  52. x0 = Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.float32))
  53. x1 = Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.int32))
  54. x2 = Tensor(np.random.uniform(-2, 2, (3, 2)).astype(np.bool))
  55. t = mstype.float32
  56. context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
  57. net = Net(t)
  58. output = net(x0)
  59. type0 = output.asnumpy().dtype
  60. assert type0 == 'float32'
  61. output = net(x1)
  62. type1 = output.asnumpy().dtype
  63. assert type1 == 'float32'
  64. output = net(x2)
  65. type2 = output.asnumpy().dtype
  66. assert type2 == 'float32'